publication . Preprint . 2013

Existence and Solution-representation of IVP for LFDE with Generalized Riemann-Liouville fractional derivatives and $n$ terms

Kim, Myong-Ha; Ri, Guk-Chol; O, Hyong-Chol;
Open Access English
  • Published: 12 Feb 2013
Abstract
This paper provides the existence and representation of solution to an initial value problem for the general multi-term linear fractional differential equation with generalized Riemann-Liouville fractional derivatives and constant coefficients by using operational calculus of Mikusinski's type. We prove that the initial value problem has the solution of if and only if some initial values should be zero.
Subjects
ACM Computing Classification System: ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION
free text keywords: Mathematical Physics, Mathematics - Classical Analysis and ODEs, 34A08, 26A33, 44A40, 34A25
Download from
19 references, page 1 of 2

[1] R. Caponetto, G. Dongola, L. Fortuna, I. Petr, Fractional Order Systems: Modeling and Control Applications, in: World Scientific Series on Nonlinear Science, vol. 72, World Scientific, 2010.

[2] K. M. Furati, M.D. Kassim, N.e-. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comp. Math. Appl. (2012), doi:10:1016/j.camwa.2012.01.009

[3] R. Hilfer, Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000).

[4] R. Hilfer; Fractional time evolution. In: Applications of Fractional Calculus in Physics (Ed. R. Hilfer); World Scientific, Singapore 2000, 87-130 [OpenAIRE]

[5] R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials, Chem. Phys. 284 (2002) 399-408. [OpenAIRE]

[6] R. Hilfer, Y. Luchko, Z. Tomovski, Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives, Fract. Calc. Appl. Anal. 12 (3) (2009) 299-318.

[7] A. A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204, Elsevier, North Holland, 2006.

[8] Y. F. Luchko, H. Srivastava; The exact solution of certain differential equations of fractional order by using operational calculus; Comp. Math. Appl. 29(8)(1995), 73-85 [OpenAIRE]

[9] Y. F. Luchko, R. Grenflo; An operational method for solving fractional differential equations with caputo derivatives; ACTA Mathematica Vietnamica 24(2)(1999), 207-233

[10] J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul. 16 (3) (2011) 1140-1153.

[11] C.A. Monje, Y. Chen, B.M. Vinagre, D. Xue, V. Feliu, Fractional-Order Systems and Controls, in: Advances in Industrial Control, Springer, 2010.

[12] Myong-Ha Kim and Hyong-Chol O, On Explicit Representations of Greens Function for Linear Fractional Differential Operator with Variable Coefficients, Research Paper: KISU-MATH-2012-E-R-002, arXiv:1208.1909v2[math-ph]

[13] I. Podlubny, Fractional Differential Equations, in: Mathematics in Science and Engineering, vol. 198, Acad. Press, 1999.

[14] J. Sabatier ,O. P. Agrawal, J. A. Tenreiro Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering ,Springer, 2007.

[15] T. Sandev, R. Metzler, Z. Tomovski, Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative, J. Phys. A: Math. Theor. 44 (25) (2011) Article ID255203, 21 p. [OpenAIRE]

19 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue