# A purely infinite AH-algebra and an application to AF-embeddability

- Published: 28 May 2002
- Country: Philippines

- University of Southeastern Philippines Philippines

- 1
- 2

[1] B. Blackadar, Matricial and ultra matricial topology, Operator Algebras, Mathematical Physics, and low-dimensional Topology (Istanbul, 1991) (A. K. Peters, ed.), Res. Notes Math., vol. 5, Wellesley, 1993, pp. 11-38.

[2] B. Blackadar, A. Kumjian, and M. Rørdam, Approximately central matrix units and the structure of non-commutative tori, K-theory 6 (1992), 267-284. [OpenAIRE]

[3] E. Blanchard and E. Kirchberg, Non simple purely infinite C∗-algebras: The Hausdorff case, to appear in J. Funct. Anal.

[4] L. G. Brown and G. K. Pedersen, C∗-algebras of real rank zero, J. Funct. Anal. 99 (1991), 131-149.

[5] G. A. Elliott, On the classification of inductive limits of sequences of semisimple finitedimensional algebras, J. Algebra 38 (1976), 29-44.

[6] K. R. Goodearl, Notes on a class of simple C∗-algebras with real rank zero, Publicacions Matem`atiques 36 (1992), 637-654. [OpenAIRE]

[7] U. Haagerup, Every quasi-trace on an exact C∗-algebra is a trace, preprint, 1991.

[8] J. Hjelmborg and M. Rørdam, On stability of C∗-algebras, J. Funct. Anal. 155 (1998), no. 1, 153-170. , On the existence of traces on exact stably projectionless simple C∗-algebras, Operator Algebras and their Applications (P. A. Fillmore and J. A. Mingo, eds.), Fields Institute Communications, vol. 13, Amer. Math. Soc., 1995, pp. 171-172. [OpenAIRE]

[11] E. Kirchberg and N. C. Phillips, Embedding of exact C∗-algebras into O2, J. Reine Angew. Math. 525 (2000), 17-53.

[12] E. Kirchberg and M. Rørdam, Non-simple purely infinite C∗-algebras, American J. Math. 122 (2000), 637-666. [OpenAIRE]

[13] [14] , Infinite non-simple C∗-algebras: absorbing the Cuntz algebra O∞, Advances in Math. 167 (2002), no. 2, 195-264.

, Purely infinite C∗-algebras: Ideal preserving zero homotopies, Preprint, 2003.

[15] J. Mortensen, Classification of certain non-simple C∗-algebras, J. Operator Theory 41 (1999), no. 2, 223-259.

[16] N. Ozawa, Homotopy invariance of AF-embeddability, Geom. Funct. Anal. 39 (2003), no. 3, 216-222.

[17] M. Rørdam, A simple C∗-algebra with a finite and an infinite projection, Acta Math. 191 (2003), 109-142. [OpenAIRE]

- 1
- 2