Moment-angle manifolds, intersection of quadrics and higher dimensional contact manifolds

Preprint English OPEN
Barreto, Yadira; Verjovsky, Alberto;
  • Subject: Mathematics - Symplectic Geometry | Mathematics - Algebraic Topology
    arxiv: Mathematics::Differential Geometry | Mathematics::Geometric Topology | Mathematics::Symplectic Geometry

We construct new examples of contact manifolds in arbitrarily large dimensions. These manifolds which we call quasi moment-angle manifolds, are closely related to the classical moment-angle manifolds.
  • References (18)
    18 references, page 1 of 2

    [1] Altschuler, Steven J, “A geometric heat flow for one-forms on three dimensional manifolds”, Illinois Journal of Mathematics, Vol. 39, no. 1, pp. 98-118, 1995.

    [2] Altschuler, Steven J. and Wu, Lani F., “On Deforming Confoliations”, J. Differential Geometry, Vol. 54, pp. 75-97, 2000.

    [4] Barreto, Y. and Lo´pez de Medrano S. and Verjovsky A., “Open Book Structures on Moment-Angle Manifolds ZC(Λ) and Higher Dimensional Contact Manifolds”, arXiv:1303.2671v1 [math.AT] 11 Mar 2013.

    [5] Bosio, F and Meersseman, L.“Real Quadrics in Cn, complex manifolds and convex polytopes”., Acta Math., Vol. 197, pp. 53-127, 2006.

    [6] Buchstaber,V. M. and Panov, T. E. “Torus actions and their applications in Topology and Combinatorics”, University Lecture Seriers, AMS, 2002.

    [7] Buchstaber,V. M. and Panov, T. E. 'Toric Topology”, arXiv:1210.2368v2 [math.AT] 3 Mar. 2013.

    [8] Davis, M. W, Januszkiewicz, T. “Convex polytopes, coxeter orbifolds and torus actions” Duke Math. Journal. Vol. 62, No. 2, pp. 417-451, 1991.

    [9] Eliashberg, Y., “Topological characterization of Stein manifolds of dimension > 2 ,” International Journal of Mathematical, Vol. 1, No. 1, pp. 29-46, 1990.

    [10] Eliashberg, Yakov M. and Thurston, W. P., “Confoliations”, American Mathematical Society. Lectures Series, Vol. 13, 1998.

    [11] Giroux, E., “Geometrie de contact: de la dimension trois vers les dimensions superieures”, ICM, Vol. II, pp. 405-414, 2002.

  • Metrics
Share - Bookmark