publication . Preprint . 2014

Tensor Transpose and Its Properties

Pan, Ran;
Open Access English
  • Published: 06 Nov 2014
Abstract
Tensor transpose is a higher order generalization of matrix transpose. In this paper, we use permutations and symmetry group to define? the tensor transpose. Then we discuss the classification and composition of tensor transposes. Properties of tensor transpose are studied in relation to tensor multiplication, tensor eigenvalues, tensor decompositions and tensor rank.
Subjects
arXiv: Quantitative Biology::Genomics
free text keywords: Computer Science - Numerical Analysis, Mathematics - Numerical Analysis
Download from
20 references, page 1 of 2

[1] B. W. Bader and T. G. Kolda, Algorithm 862: MATLAB tensor classes for fast algorithm prototyping, ACM Trans. Math. Software, 32 (2006), pp. 635{653. [OpenAIRE]

[2] B. W. Bader and T. G. Kolda, MATLAB Tensor Toolbox, Version 2.2., Available at http://csmr.ca.sandia.gov/ tgkolda/TensorToolbox/, (2007).

[3] J. D. Carroll and J. J. Chang, Analysis of individual di erences in multidimensional scaling via an N-way generalization of Eckart-Young decomposition, Psychometrika, 35 (1970), pp. 283{319.

[4] R. B. Cattell, Parallel proportional pro les and other principles for determining the choice of factors by rotation, Psychometrika, 9 (1944), pp. 267{283. [OpenAIRE]

[5] R. B. Cattell, The three basic factor-analytic research designstheir interrelations and derivatives, Psych. Bull., 49 (1952), pp. 452{499.

[6] Z. Chen, L. Lu, Z. Liu The eigenvalue problems for tensor and tensor transposition (Chinese), Journal of Xiamen University (Natural Science), Vol. 51, No. 3, (2012) [9] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harshman, Indexing by latent semantic analysis, J. Amer. Soc. Inform. Sci., 41 (1990), pp. 391{407.

[11] M. Hassani, Derangements and Applications, J. Integer Seq. 6, No. 03.1.2, (2003), pp. 1{8.

[12] F. L. Hitchcock, Multilple invariants and generalized rank of a p-way matrix or tensor, J. Math. Phys., 7 (1927), pp. 39{79.

[13] F. L. Hitchcock, The expression of a tensor or a polyadic as a sum of products, J. Math.Phys., 6 (1927), pp. 164{189. [OpenAIRE]

[14] N. Jacobson, Basic Algebra(I) (2nd Edition), New York: W.H. Freeman and Company, (1985).

[15] T. G. Kolda, Multilinear Operators for Higher-Order Decompositions, Tech. Report SAND2006{2081, Sandia National Laboratories, Albuquerque, NM, Livermore, CA, (2006).

[16] T. G. Kolda and B. W. Bader, Tensor Decompositions and Applications, SIAM 2009: Vol. 51, No. 3, pp. 455{500.

[17] T. G. Kolda and B. W. Bader, The TOPHITS model for higher-order web link analysis, in Workshop on Link Analysis, Counterterrorism and Security, (2006). [OpenAIRE]

[18] L. de Lathauwer, B. de Moor, and J. Vandewalle, A multilinear singular value decomposition, SIAM J. Matrix Anal. Appl., 21, (2000), pp. 1253{1278. [OpenAIRE]

[19] L.H. Lim, Singular values and eigenvalues of tensors: A variational approach, Proceedings of the 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), December 13{15, (2005), pp. 129{132.

20 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue