publication . Preprint . 2002

Fundamental Principle for Quantum Theory

Khrennikov, Andrei;
Open Access English
  • Published: 02 Apr 2002
Abstract
We propose the principle, the law of statistical balance for basic physical observables, which specifies quantum statistical theory among all other statistical theories of measurements. It seems that this principle might play in quantum theory the role that is similar to the role of Einstein's relativity principle.
Subjects
free text keywords: Quantum Physics
Download from
27 references, page 1 of 2

1. A. Zeilinger, On the interpretation and philosophical foundations of quantum mechanics. in Vastakohtien todellisuus. Festschrift for K.V. Laurikainen. U. Ketvel et al. (eds), Helsinki Univ. Press, 1996.

2. A. Einstein, Relativity. The special and general theory. New York, Henry Holt, 1920.

3. W. De Muynck, W. De Baere, H. Marten, Found. of Physics, 24, 1589-1663 (1994).

4. A. Yu. Khrennikov, Linear representations of probabilistic transformations induced by context transitions. J. Phys.A: Math. Gen., 34, 9965-9981 (2001); quant-ph/0105059 A. Yu. Khrennikov, Ensemble fluctuations and the origin of quantum probabilistic rule. Reports MSI, V¨axj¨o University, 90, October (2000). [OpenAIRE]

5. A. Yu. Khrennikov, Ensemble fluctuations and the origin of quantum probabilistic rule. J. Math. Phys., 43, N. 2, 789-802 (2002). [OpenAIRE]

A. Yu. Khrennikov, Contextual viewpoint to quantum stochastics. Proc. of Conf. ”Quantum Theory: Reconsideration of Foundations, series Math. Modeling, 2 , V¨axj¨o Univ. Press, 2002;hep-th/0112076.

[6] L. E. Ballentine, Probability theory in quantum mechanics. American J. of Physics, 54, 883-888 (1986).

[7] L. E. Ballentine, Interpretations of probability and quantum theory. Proc. Conf. Foundations of Probability and Physics. Q. Prob. White Noise Anal., 13, 71-84, WSP, Singapore (2001).

[8] L. E. Ballentine, Quantum mechanics. Englewood Cliffs, New Jersey, 1989.

[9] S. P. Gudder, Special methods for a generalized probability theory. Trans. AMS, 119, 428-442 (1965). [OpenAIRE]

[10] S. P. Gudder, Axiomatic quantum mechanics and generalized probability theory. Academic Press, New York (1970).

[11] S. P. Gudder, An approach to quantum probability. Proc. Conf. Foundations of Probability and Physics, ed. A. Khrennikov. Quantum Prob. White Noise Anal., 13, 147-160, WSP, Singapore (2001).

[12] E. Prugovecki, J. Math. Phys., 7, 1054-1069 (1966).

[13] E. Prugovecki, Canadian J. Phys., 45, 2173-2219 (1967).

[14] Proc. of Conf. ”Quantum Theory: Reconsideration of Foundations”. Ed. A. Khrennikov, series Math. Modeling, 2 , V¨axj¨o Univ. Press, 2002;

27 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue