## An Einstein equation for discrete quantum gravity

Preprint English OPEN
Gudder, Stan (2012)
• Subject: General Relativity and Quantum Cosmology | Quantum Physics

The basic framework for this article is the causal set approach to discrete quantum gravity (DQG). Let $Q_n$ be the collection of causal sets with cardinality not greater than $n$ and let $K_n$ be the standard Hilbert space of complex-valued functions on $Q_n$. The formalism of DQG presents us with a decoherence matrix $D_n(x,y)$, $x,y\in Q_n$. There is a growth order in $Q_n$ and a path in $Q_n$ is a maximal chain relative to this order. We denote the set of paths in $Q_n$ by $\Omega_n$. For $\omega, \omega '\in\Omega_n$ we define a bidifference operator $\varbigtriangledown_{\omega, \omega '}^n$ on $K_n\otimes K_n$ that is covariant in the sense that $\varbigtriangledown_{\omega, \omega '}^n$ leaves $D_n$ stationary. We then define the curvature operator $\rscript_{\omega, \omega'}^n=\varbigtriangledown_{\omega, \omega '}^n-\varbigtriangledown_{\omega ', \omega}^n$. It turns out that $\rscript_{\omega, \omega '}^n$ naturally decomposes into two parts $\rscript_{\omega, \omega '}^n=\dscript_{\omega, \omega '}^n+\tscript_{\omega, \omega '}^n$ where $\dscript_{\omega, \omega '}^n$ is closely associated with $D_n$ and is called the metric operator while $\tscript_{\omega, \omega '}^n$ is called the mass-energy operator. This decomposition is a discrete analogue of Einstein's equation of general relativity. Our analogue may be useful in determining whether general relativity theory is a close approximation to DQG.
• References (12)
12 references, page 1 of 2

 L. Bombelli, J. Lee, D. Meyer and R. Sorkin, Spacetime as a casual set, Phys. Rev. Lett. 59 (1987), 521-524.

 F Dowker, S. Johnston and S. Surya, “On extending the quantum measure, arXiv: quant-ph 1002.2725 (2010).

 S. Gudder, Discrete quantum gravity, arXiv: gr-gc 1108.2296 (2011).

 S. Gudder, Models for discrete quantum gravity, arXiv: gr-gc 1108.6036 (2011).

 J. Henson, Quantum histories and quantum gravity, arXiv: gr-gc 0901.4009 (2009).

 D. Rideout and R. Sorkin, A classical sequential growth dynamics for causal sets, Phys. Rev. D 61 (2000), 024002.

 R. Sorkin, Quantum mechanics as quantum measure theory, Mod. Phys. Letts. A 9 (1994), 3119-3127.

 R. Sorkin, Causal sets: discrete gravity, arXiv: gr-qc 0309009 (2003).

 R. Sorkin, Toward a “fundamental theorem of quantal measure theory,” arXiv: hep-th 1104.0997 (2011) and Math. Struct. Comp. Sci. (to appear)

 S. Surya, Directions in causal set quantum gravity, arXiv: gr-qc 1103.6272 (2011).

• Metrics
No metrics available
Share - Bookmark