Copula Index for Detecting Dependence and Monotonicity between Stochastic Signals

Preprint English OPEN
Karra, Kiran; Mili, Lamine;
(2017)
  • Subject: Statistics - Machine Learning | Quantitative Biology - Quantitative Methods

This paper introduces a nonparametric copula-based index for detecting the strength and monotonicity structure of linear and nonlinear statistical dependence between pairs of random variables or stochastic signals. Our index, termed Copula Index for Detecting Dependence... View more
  • References (9)

    M. Ahsanullah, V. Nevzorov, and M. Shakil. An Introduction to Order Statistics, volume 3. Atlantis Press, 2013.

    T. Bedford and R. Cooke. Vines{a new graphical model for dependent random variables. The Annals of Statistics, 30(4):1031{1068, 08 2002. doi: 10.1214/aos/1031689016.

    J. Beirlant, E. Dudewica, L. Gyor , and E. van der Meulen. Nonparametric entropy estimation : An overview. Journal of Statistics, 1997.

    P. Bellot, C. Olsen, P. Salembier, A. Oliveras-Verges, and P. Meyer. Netbenchmark: a bioconductor package for reproducible benchmarks of gene regulatory network inference. BMC Bioinformatics, 16(1):312, 2015. doi: 10.1186/s12859-015-0728-4.

    D. Lopez-Paz, P. Henning, and B. Scholkopf. The Randomized Dependence Coe cient. In Advances in Neural Information Processing Systems 26. Curran Associates, Inc., 2013.

    A. Margolin, I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, R. Favera, and A. Califano. ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context. BMC Bioinformatics, 7(1):S7, 2006.

    F. Vandenhende and P. Lambert. Improved Rank-Based Dependence Measures for Categorical Data. Statistics and Probability Letters, 63(2):157{163, 2003.

    J. Yang, S. Cheng, and L. Zhang. Bivariate Copula Decomposition in Terms of Comonotonicity, Countermonotonicity and Independence. Insurance: Mathematics and Economics, 39(2):267 { 284, 2006. doi: http://dx.doi.org/10.1016/j.insmatheco.2006.02.015.

    Y. Zheng, J. Yang, and J. Huang. Approximation of Bivariate Copulas by Patched Bivariate Frechet Copulas. Insurance: Mathematics and Economics, 48(2):246 { 256, 2011. doi: http://dx.doi.org/10.1016/j.insmatheco.2010.11.002.

  • Related Research Results (5)
  • Metrics
Share - Bookmark