Share  Bookmark

 Download from


[1] M. Bellon and CM. Viallet, Algebraic Entropy. Comm. Math. Phys. 204 (1999), pp. 425437. chaodyn/9805006.
[2] A.P. Veselov, Growth and Integrability in the Dynamics of Mappings. Comm. Math. Phys. 145 (1992), pp. 181193.
[3] G. Falqui and C.M. Viallet, Singularity, complexity, and quasiintegrability of rational mappings. Comm. Math. Phys. 154 (1993), pp. 111125. hepth/9212105.
[4] G. Dimitrov, F. Haiden, L. Katzarkov, and M. Kontsevich. Dynamical systems and categories. arXiv:1307.841, (2013).
[5] S. Tremblay, B. Grammaticos, and A. Ramani, Integrable lattice equations and their growth properties. Phys. Lett. A 278 (2001), pp. 319324.
[6] CM. Viallet. Algebraic entropy for lattice equations. arXiv:mathph/0609043.
[7] D.K. Demskoy and C.M. Viallet, Algebraic entropy for semidiscrete equations. J. Phys. A: Math. Theor. 45 (2012), p. 352001. arXiv:1206.1214.
[8] G.R.W. Quispel, H.W. Capel, and R. Sahadevan, Continous symmetries of differentialdifference equations: the Kacvan Moerbeke equation and the PainlevĀ“e reduction. Phys. Lett. A(170) (1992), pp. 379383.
[9] B. Grammaticos, A. Ramani, and I.C. Moreira, Delaydifferential equations and the PainlevĀ“e transcendents. Physica A 196 (1993), pp. 574590.
[10] N. Joshi, Direct 'delay' reductions of the Toda equation. Journal of Physics A: Mathematical and Theoretical 42 (2009), pp. 022001022009. arXiv:0810.5581.