## Algebraic entropy for differential-delay equations

*Viallet, Claude M.*;

- Publisher: HAL CCSD
- Subject: Nonlinear Sciences - Exactly Solvable and Integrable Systems | [NLIN.NLIN-SI]Nonlinear Sciences [physics]/Exactly Solvable and Integrable Systems [nlin.SI]

- References (19) 19 references, page 1 of 2
- 1
- 2

[1] M. Bellon and C-M. Viallet, Algebraic Entropy. Comm. Math. Phys. 204 (1999), pp. 425-437. chao-dyn/9805006.

[2] A.P. Veselov, Growth and Integrability in the Dynamics of Mappings. Comm. Math. Phys. 145 (1992), pp. 181-193.

[3] G. Falqui and C.-M. Viallet, Singularity, complexity, and quasi-integrability of rational mappings. Comm. Math. Phys. 154 (1993), pp. 111-125. hep-th/9212105.

[4] G. Dimitrov, F. Haiden, L. Katzarkov, and M. Kontsevich. Dynamical systems and categories. arXiv:1307.841, (2013).

[5] S. Tremblay, B. Grammaticos, and A. Ramani, Integrable lattice equations and their growth properties. Phys. Lett. A 278 (2001), pp. 319-324.

[6] C-M. Viallet. Algebraic entropy for lattice equations. arXiv:math-ph/0609043.

[7] D.K. Demskoy and C.-M. Viallet, Algebraic entropy for semi-discrete equations. J. Phys. A: Math. Theor. 45 (2012), p. 352001. arXiv:1206.1214.

[8] G.R.W. Quispel, H.W. Capel, and R. Sahadevan, Continous symmetries of differentialdifference equations: the Kac-van Moerbeke equation and the PainlevĀ“e reduction. Phys. Lett. A(170) (1992), pp. 379-383.

[9] B. Grammaticos, A. Ramani, and I.C. Moreira, Delay-differential equations and the PainlevĀ“e transcendents. Physica A 196 (1993), pp. 574-590.

[10] N. Joshi, Direct 'delay' reductions of the Toda equation. Journal of Physics A: Mathematical and Theoretical 42 (2009), pp. 022001-022009. arXiv:0810.5581.

- Metrics No metrics available

- Download from

- Cite this publication