publication . Preprint . 2011

Broadband phase-preserved optical elevator

Luo, Yuan; Han, Tiancheng; Zhang, Baile; Qiu, Cheng-Wei; Barbastathis, George;
Open Access English
  • Published: 30 Sep 2011
Abstract
Phase-preserved optical elevator is an optical device to lift up an entire plane virtually without distortion in light path or phase. Using transformation optics, we have predicted and observed the realization of such a broadband phase-preserved optical elevator, made of a natural homogeneous birefringent crystal without resorting to absorptive and narrowband metamaterials involving time-consuming nano-fabrication. In our demonstration, the optical elevator is designed to lift a sheet upwards, and the phase is verified to be preserved always. The camouflage capability is also demonstrated in the presence of adjacent objects of the same scale at will. The elevati...
Subjects
arXiv: Physics::Optics
free text keywords: Physics - Optics, Mathematical Physics
Funded by
NIH| A Spatial-Spectral Volume Holographic Imaging System for Ex-Vivo and In-Vivo Canc
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 5R01CA134424-05
  • Funding stream: NATIONAL CANCER INSTITUTE
Download from
31 references, page 1 of 3

1. Leonhardt, U. Optical conformal mapping. Science 312, 1777-1780 (2006).

2. Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780-1782 (2006).

3. Dolin, L. S. On a possibility of comparing three-dimensional electromagnetic systems with inhomogeneous filling. Izv. Vyssh. Uchebn. Zaved. Radiofiz. 4, 964-967 (1961).

4. Post, E. G. Formal Structure of Electromagnetics; General Covariance and Electromagnetics (Interscience, 1962).

5. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966-3969 (2000). [OpenAIRE]

6. Jacob, Z., Alekseyev, L. V. & Narimanov, E. Optical hyperlens: Far-field imaging beyond the diffraction limit. Opt. Exp. 14, 8247-8256 (2006).

7. Salandrino, A. & Engheta, N. Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations. Phys. Rev. B 74, 075103 (2006). [OpenAIRE]

8. Kildishev, A. V. & Narimanov, E. E. Impedance-matched hyperlens. Opt. Lett. 32, 3432- 3434 (2007). [OpenAIRE]

9. Zhang, X. & Liu. Z. Superlenses to overcome the diffraction limit. Nature Mater. 7, 435- 441 (2008).

10. Leonhardt, U. & Tyc, T. Broadband invisibility by non-euclidean cloaking. Science 323, 110-112 (2009). [OpenAIRE]

11. Li, J. & Pendry, J. B. Hiding under the carpet: a new strategy for cloaking. Phys. Rev. Lett. 101, 203901 (2008). [OpenAIRE]

12. Leonhardt, U. To invisibility and beyond. Nature 471, 292-293 (2011).

13. Chen, X., Luo, Y., Zhang, J., Jiang, K., Pendry, J. B. & Zhang, S. Macroscopic invisibility cloaking of visible light. Nature Commun. 2, 176 (2011).

14. Zhang, B., Luo, Y., Liu X. & Barbastathis, G. Macroscopic invisibility cloak for visible light. Phys. Rev. Lett. 106, 033901 (2011).

15. Lai, Y., Ng, J., Chen, H. Y., Han, D., Xiao, J., Zhang, Z. & Chan, C.T. Illusion optics: the optical transformation of an object into another object. Phys. Rev. Lett. 102, 253902 (2009).

31 references, page 1 of 3
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue