Share  Bookmark

 Download from


[1] J. E. Gilbert and M. A. M. Murray, Clifford algebras and Dirac operators in harmonic analysis, (Cambridge University Press, Cambridge 1991).
[2] M. M. Postnikov, Lie groups and Lie algebras, (Nauka, Moscow 1982).
[3] H. Weyl, The Theory of Groups and Quantum Mechanics, (Dover Publications, New York 1931).
[4] J. C. Baez, I. E. Segal, Z. Zhou, Introduction to Algebraic and Constructive Quantum Field Theory, (Princeton University Press, Princeton 1992).
[5] A. Connes, Noncommutative Geometry, (Academic Press, San Diego 1994).
[6] B. Boulat and M. Rance, “Algebraic formulation of the product operator formalism in the numerical simulation of the dynamic behaviour of multispin systems,” Mol. Phys. 83 1021 (1994).
[7] S. S. Somaroo, D. G. Cory, T. F. Havel, “Expressing the operations of quantum computing in multiparticle geometric algebra,” Phys. Lett. A 240 1 (1998).
[8] T. F. Havel and C. J. L. Doran, “Geometric algebra in quantum information processing,” Preprint arXiv:quantph/0004031 (2000).
[9] P. Benioff, “Quantum Mechanical Hamiltonian Models of Discrete Processes That Erase Their Own Histories: Application to Turing Machines,” Int. J. Theor. Phys. 21, 177 (1982).
[10] R. Feynman, “Simulating Physics with Computers,” Int. J. Theor. Phys. 21 467 (1982).