Quantum Cosmology

Preprint English OPEN
Kiefer, Claus ; Sandhoefer, Barbara (2008)
  • Subject:
    arxiv: General Relativity and Quantum Cosmology

We give an introduction into quantum cosmology with emphasis on its conceptual parts. After a general motivation we review the formalism of canonical quantum gravity on which discussions of quantum cosmology are usually based. We then present the minisuperspace Wheeler--DeWitt equation and elaborate on the problem of time, the imposition of boundary conditions, the semiclassical approximation, the origin of irreversibility, and singularity avoidance. Restriction is made to quantum geometrodynamics; loop quantum gravity and string theory are discussed in other contributions to this volume.
  • References (43)
    43 references, page 1 of 5

    1. E. Joos, H. D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, and I.-O. Stamatescu (2003): Decoherence and the Appearance of a Classical World in Quantum Theory, second edition (Springer, Berlin).

    2. C. Kiefer (2007): Quantum Gravity, second edition (Oxford University Press, Oxford).

    3. C. Kiefer (2006): Quantum cosmology: expectations and results. Annalen der Physik 15, 316-325.

    4. D. H. Coule (2005): Quantum cosmological models. Class. Quantum Grav. 22, R125-166.

    5. D. L. Wiltshire (1996): An introduction to quantum cosmology. In: Cosmology: The physics of the Universe, edited by B. Robson, N. Visvanathon, and W. S. Woolcock (World Scientific, Singapore), pp. 473-531.

    6. J. J. Halliwell (1991): Introductory lectures on quantum cosmology. In: Quantum Cosmology and Baby Universes, edited by S. Coleman, J. B. Hartle, T. Piran, and S. Weinberg (World Scientific, Singapore), pp. 159-243.

    7. B. S. DeWitt (1967): Quantum theory of Gravity. I. The canonical theory. Phys. Rev. 160, 1113-1148.

    8. C. W. Misner (1972): Minisuperspace. In: Magic without magic, edited by J. R. Klauder (Freeman, San Francisco), pp. 441-473.

    9. M. P. Ryan (1972): Hamiltonian Cosmology. Lecture Notes in Physics 13 (Springer, Berlin).

    10. J. B. Hartle and S. W. Hawking (1983): Wave function of the Universe. Phys. Rev. D 28, 2960-2975.

  • Metrics
    No metrics available
Share - Bookmark