Approximate, analytic solutions of the Bethe equation for charged particle range

Preprint English OPEN
Swift, Damian C.; McNaney, James M.;
(2009)
  • Subject: Physics - Accelerator Physics | Condensed Matter - Other Condensed Matter | Nuclear Experiment

By either performing a Taylor expansion or making a polynomial approximation, the Bethe equation for charged particle stopping power in matter can be integrated analytically to obtain the range of charged particles in the continuous deceleration approximation. Ranges ma... View more
  • References (19)
    19 references, page 1 of 2

    [1] For instance, A. Brahme, Int. J. Radiat. Oncol. Biol. Phys. 58, 2, pp 603-616 (2004).

    [2] For instance, T. Li, Z. Liang, J.V. Singanallur, T.J. Satogata, D.C. Williams, and R.W. Schulte, Med. Phys. 33, 3, pp 699-706 (2006).

    [3] For instance, N. Chitose, Y. Katsumura, M. Domae, Z. Zuo, T. Murakami, and J.A. LaVerne, J. Phys. Chem. A 103, 24, pp 4769-4774 (1999).

    [4] For instance, W. Shockley, U.S. patents 2,666,814 (1949) and 2,787,564 (1954) and many more recent developments.

    [5] L.D. Tsendin, Plasma Sources Sci. Technol. 4, pp 200-211 (1995).

    [6] For instance, D. Keefe, Ann. Rev. Nuc. Part. Sci. 32, pp 391-441 (1982).

    [7] For instance, E. Normand and W.R. Doherty, IEEE Trans. Nuc. Sci. 36, 6, pp 2349-2355 (1989).

    [8] For instance, J.W. Wilson, J. Miller, A. Konradi, and F.A. Cucinotta, NASA Conference Publication 3360 (1997).

    [9] For instance, M.J. Mulhearn, 'A direct search for Dirac magnetic monopoles,' D.Phil. thesis, Massachusetts Inst. of Technol. (2004).

    [10] J.A. Crowther, Phil. Mag. 12, 379 (1906).

  • Metrics
    No metrics available
Share - Bookmark