Numerical semigroups in a problem about economic incentives for consumers

Preprint English OPEN
Robles-Pérez, Aureliano M.; Rosales, José Carlos;
(2016)
  • Related identifiers: doi: 10.2298/FIL1810667R
  • Subject: Primary 20M14, 68R10, Secondary 11P99, 11D07 | Computer Science - Discrete Mathematics | Mathematics - Group Theory | Mathematics - Number Theory
    acm: TheoryofComputation_GENERAL | ComputingMilieux_MISCELLANEOUS
    arxiv: Computer Science::Computers and Society | Computer Science::Computer Science and Game Theory

Motivated by a promotion to increase the number of musical downloads, we introduce the concept of $C$-incentive and show an algorithm that compute the smallest $C$-incentive containing a subset $X \subseteq {\mathbb N}$. On the other hand, in order to study $C$-incentiv... View more
  • References (18)
    18 references, page 1 of 2

    [1] M. Bras-Amoro´s and P. A. Garc´ıa-S´anchez, Patterns on numerical semigroups, Linear Algebra Appl. 414 (2006), 652-669.

    [2] M. Bras-Amoro´s, P. A. Garc´ıa-S´anchez, and A. Vico-Oton, Nonhomogeneous patterns on numerical semigroups, Int. J. Algebra Comput. 23 (2013), 1469-1483.

    [3] M. Bras-Amoro´s, K. Stokes, The semigroup of combinatorial configurations, Semigroup Forum 84 (2012), 91-96.

    [4] M. Delgado, P. A. Garc´ıa-S´anchez, and J. Morais, “numericalsgps”: a GAP package on numerical semigroups. (\protect\vrule width0pt\protect\href{http://www.gap-system.org/Packages/numericalsgps.

    [5] M. Delgado, P. A. Garc´ıa-S´anchez, J. C. Rosales, J. M. Urbano-Blanco, Systems of proportionally modular Diophantine inequalities, Semigroup Forum 76 (2008), 469-488.

    [6] J. L. Ram´ırez Alfons´ın, The Diophantine Frobenius problem (Oxford Univ. Press, 2005).

    [7] A. M. Robles-P´erez, J. C. Rosales, The numerical semigroup of phrases' lengths in a simple alphabet, The Scientific World Journal 2013 (2013), Article ID 459024, 9 pages.

    [8] A. M. Robles-P´erez, J. C. Rosales, The numerical semigroup of the integers which are bounded by a submonoid of N2, Electron. Notes Discrete Math. 46 (2014), 249-256.

    [9] A. M. Robles-P´erez, J. C. Rosales, Frobenius pseudo-varieties in numerical semigroups, Ann. Mat. Pura Appl. 194 (2015), 275-287.

    [10] A. M. Robles-P´erez, J. C. Rosales, Numerical semigroups in a problem about cost-effective transport. Preprint.

  • Metrics
Share - Bookmark