publication . Preprint . 2000

Generalized Laws of Black Hole Thermodynamics and Quantum Conservation Laws on Hawking Radiation Process

Wu, S. Q.; Cai, X.;
Open Access English
  • Published: 12 Apr 2000
Abstract
Four classical laws of black hole thermodynamics are extended from exterior (event) horizon to interior (Cauchy) horizon. Especially, the first law of classical thermodynamics for Kerr-Newman black hole (KNBH) is generalized to those in quantum form. Then five quantum conservation laws on the KNBH evaporation effect are derived in virtue of thermodynamical equilibrium conditions. As a by-product, Bekenstein-Hawking's relation $ S=A/4 $ is exactly recovered.
Subjects
arXiv: Astrophysics::High Energy Astrophysical Phenomena
free text keywords: General Relativity and Quantum Cosmology
Download from
17 references, page 1 of 2

[1] S. W. Hawking, Nature, 248, 30 (1974); Commun. Math. Phys. 43, 199 (1975).

[2] J. D. Benkenstein, Phys. Rev. D 7, 2333 (1973); D 9, 3294 (1974).

[3] J. M. Bardeen, B. Carter and S. W. Hawking, Commun. Math. Phys. 31, 161 (1973).

[4] J. D. Benkenstein, Do we understand black hole entropy ?, gr-qc/9409015.

[5] L. Bombelli, R. Koul, J.Lee and R. Sorkin, Phys. Rev. D 34, 373 (1986).

[6] V. Frolov and I. Novikov, Phys. Rev. D 48, 4545 (1993); gr-qc/9309001; V. Frolov, Phys. Rev. Lett. 74, 3319 (1995); gr-qc/9406037.

[7] W. H. Zurek and K. S. Thorne, Phys. Rev. Lett. 50, 2171 (1985).

[8] M. H. Lee and J. Kim, hep-th/9604130; Phys. Lett. A 212, 323 (1996); hepth/9602129; J. Ho, W. T. Kim, Y. J. Park, Class. Quant. Grav. 14, 2617 (1997); gr-qc/9704032.

[10] L. Liu, General Relativity, ( Adv. Edu. Pub., 1987).

[11] B. Carter, Phys. Rev. 174, 1559 (1968).

[12] S. Q. Wu, X. Cai, Exact Solutions to sourceless Charged Massive Scalar Field Equation on Kerr-Newman Background, J. Math. Phys. 40, 4538 (1999).

[13] P. M. Morse, H. Feshbach, Methods of Theoretical Physics, ( McGraw-Hill, New York, 1953); Handbook of Mathematical Functions, edited by M. Abramowitz & I. A. Stegun, 9th version, ( Dover, New York, 1972).

[14] E. W. Leaver, J. Math. Phys. 27, 1238 (1986).

[15] T. Damour, R. Ruffini, Phys. Rev. D 14, 332 (1976).

[16] L. Smarr, Phys. Rev. Lett. 30, 71 (1973); 30, 521(E) (1973).

17 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue