publication . Preprint . Article . 2015

Reconstructing Topological Graphs and Continua

Paul Gartside; Max Pitz; Rolf Suabedissen;
Open Access English
  • Published: 24 Sep 2015
  • Country: United Kingdom
The deck of a topological space $X$ is the set $\mathcal{D}(X)=\{[X \setminus \{x\}] \colon x \in X\}$, where $[Z]$ denotes the homeomorphism class of $Z$. A space $X$ is topologically reconstructible if whenever $\mathcal{D}(X)=\mathcal{D}(Y)$ then $X$ is homeomorphic to $Y$. It is shown that all metrizable compact connected spaces are reconstructible. It follows that all finite graphs, when viewed as a 1-dimensional cell-complex, are reconstructible in the topological sense, and more generally, that all compact graph-like spaces are reconstructible.
arXiv: Mathematics::General Topology
free text keywords: Mathematics - General Topology, Mathematics - Combinatorics, Primary 05C60, 54E45, Secondary 54B05, 54D05, 54D35, 54F15, Discrete mathematics, Graph, Mathematics
20 references, page 1 of 2

[1] J. M. Aarts and T. Nishiura, Dimension and Extensions, North-Holland Mathematical Library, Vol. 48, North-Holland, Amsterdam, 1993.

[2] J. A. Bondy, A Graph Reconstructor's Manual, Surveys in combinatorics 166 (1991), 221-252.

[3] R. E. Chandler, Hausdorff Compactifications, Lecture Notes in Pure and Applied Math, Vol. 23, Marcel Dekker, New York, 1976.

[4] R. Diestel, Graph Theory, GTM 173, Springer Verlag, 3rd ed., 2005.

[5] A. Dow and K. P. Hart, Cut Points in Cˇ ech-Stone Remainders, Proc. Amer. Math. Soc. 123(3) (1995), 909-917. [OpenAIRE]

[6] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.

[7] P. Gartside, M. F. Pitz and R. Suabedissen, Reconstructing Compact Metrizable Spaces, forthcoming.

[8] L. Gillman and M. Jerison, Rings of Continuous Functions, Springer-Verlag, New York, 1976.

[9] W. Lewis, The pseudo-arc, Bol. Soc. Mat. Mexicana 3(5) (1999), 25-77.

[10] K. D. Magill Jr, Countable compactifications, Can. J. Math. 18 (1966), 616-620.

[11] K. D. Magill Jr, N -point compactifications, Amer. Math. Monthly 72 (1965), 1075-1081.

[12] K. D. Magill Jr, The Lattice of Compactifications of a Locally Compact Space, Proc. London Math. Soc. 18(2) (1968), 231-244.

[13] J. van Mill, The Infinite-Dimensional Topology of Function Spaces, North-Holland, 2001.

[14] S. B. Nadler Jr, Continuum Theory: an introduction, Monographs and Textbooks in Pure and Applied Mathematics 158, Marcel Dekker, 1992.

[15] C. St. J. A. Nash-Williams, Reconstruction of infinite graphs, Discrete Math. 95 (1991), 221-229.

20 references, page 1 of 2
Any information missing or wrong?Report an Issue