Share  Bookmark

 Download from


[1] G. D. Chakerian, H. Groemer, Convex bodies of constant width, Convexity and its applications, 4996, Birkhauser, Basel, 1983.
[2] L. Danzer, B. Gru¨nbaum, V. Klee, Hellys theorem and its relatives, in Proc. of Symp. in Pure Math. vol. VII, Convexity, 1963, pp. 99180.
[3] B. Gonzalez Merino, T. Jahn, A. Polyanskii, G. Wachsmuth, Hunting for reduced polytopes, to appear in Discrete Comput. Geom. (see also arXiv:1701.08629v1).
[4] H. Hadwiger, Kleine Studie zur kombinatorischen Geometrie der Spha¨re, Nagoya Math. J. 8 (1955), 4548.
[5] H. Han and T. Nishimura, Selfdual shapes and spherical convex bodies of constant width π/2, J. Math. Soc. Japan 69 (2017), 14751484.
[6] M. Lassak, Width of spherical convex bodies, Aequationes Math. 89 (2015), 555567.
[7] M. Lassak, H. Martini, Reduced convex bodies in Euclidean space  a survey, Expositiones Math. 29 (2011), 204219.
[8] M. Lassak, M. Musielak, Reduced spherical convex bodies, to appear (see also arXiv:1607.00132v1).
[9] K. Leichtweiss, Curves of constant width in the nonEuclidean geometry, Abh. Math. Sem. Univ. Hamburg 75 (2005), 257284.
[10] L. A. Santalo, Note on convex spherical curves, Bull. Amer. Math. Soc. 50 (1944), 528534.