Stabilization of the Lattice Boltzmann Method Using Information Theory

Preprint English OPEN
Wilson, Tyler L; Pugh, Mary; Dawson, Francis;
(2018)
  • Subject: Physics - Fluid Dynamics | Physics - Computational Physics
    arxiv: Computer Science::Performance | Computer Science::Computational Engineering, Finance, and Science | Physics::Computational Physics | Nonlinear Sciences::Cellular Automata and Lattice Gases

A novel Lattice Boltzmann method is derived using the Principle of Minimum Cross Entropy (MinxEnt) via the minimization of Kullback-Leibler Divergence (KLD). By carrying out the actual single step Newton-Raphson minimization (MinxEnt-LBM) a more accurate and stable Latt... View more
  • References (73)
    73 references, page 1 of 8

    [1] H. Liu, Q. Kang, C. R. Leonardi, S. Schmieschek, A. Narvaez, B. D. Jones, J. R. Williams, A. J. Valocchi, and J. Harting, Computational Geosciences 20, 1 (2015).

    [2] G. R. McNamara and G. Zanetti, Physical Review Letters 61, 2332 (1988).

    [3] F. J. Higuera, S. Succi, and R. Benzi, EPL (Europhysics Letters) 345, 345 (1989).

    [4] F. J. Higuera and J. Jimenez, EPL (Europhysics Letters) 9, 663 (1989).

    [5] S. Chen, H. Chen, D. Martnez, and W. Matthaeus, Physical Review Letters 67, 3776 (1991).

    [6] R. Benzi, S. Succi, and M. Vergassola, Physics Reports 222, 145 (1992).

    [7] H. Chen, S. Chen, and W. H. Matthaeus, Physical Review A 45, R5339 (1992).

    [8] Y. Qian, D. D'Humieres, and P. Lallemand, EPL (Europhysics Letters) 479 (1992).

    [9] J.-P. Rivet and J. P. Boon, Lattice Gas Hydrodynamics (Cambridge University Press, 2005) p. 312.

    [10] B. Chopard and M. Droz, Cellular Automata Modeling of Physical Systems (Cambridge University Press, 2005) p. 341.

  • Metrics
    No metrics available
Share - Bookmark