publication . Preprint . 2011

Discrete Charge Effects on an Infinitely Long Cylindrical Rod Model

Agung, Ahmad A. J; Jesudason, Christopher G.;
Open Access English
  • Published: 26 Apr 2011
Abstract
Comment: 17 Pages, 14 Figures
Subjects
arXiv: High Energy Physics::Experiment
free text keywords: Physics - Computational Physics, 82-08, 82B80, 82B99
Download from

[1] Sinden R. R.,1994, DNA Structure and Function, Academic Press, New York.

[2] Pryde, J. A., 1966, The Liquid State, Hutchinson & Co. Ltd., London.

[3] Hribar, B. and Vlachy, V., 2000, Properties of Polyelectrolyte Solutions as Determined by the Charge of Counterions, Rev. Soc. Quim. Mex., 44:1, 11-15 [OpenAIRE]

[4] Schwartz M., 1987, Principles of Electrodynamics, Dover Publications, New York.

[5] Fox, L., 1957, The Numerical Solution Of Two-Point Boundary Problems in Ordinary Differenrial Equations, Oxford University Press, London.

[6] Brandt, A., 1977, Multi-Level Adaptive Solutions to Boundary-Value Problems, Math. of Comp. 31:138, 333-390.

[7] Press, W. H., Teukolsky, S. A., Vetterling W. T. and Flannery B. P., 1992, Numerical Recipes in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, Cambridge.

[8] Oberoi, H. and Allewell N.M., 1993, Multigrid Solution of the Nonlinear Poisson-Boltzmann Equation and Calculation of Titration Curves, Biophy. J. 65, 48-55. [OpenAIRE]

[9] Holst, M. and Saied F., (1995), Numerical Solution of the Nonlinear Poisson-Boltzmann Equation: Developing More Robust and Efficient Methods J. Comput. Chem. 16, 337-364.

[10] Limbach H., Arnold A., Mann B. A., Holm C., 2006, ESPResSo - An Extensible Simulation Package for Research on Soft Matter Systems. Comput. Phys. Commun. 174(9) (704-727).

[11] Bratko, D. and Vlachy V., 1982, Distribution of Counterions in the Double Layer Around A Cylindrical Polyion, Chem. Phys. Lett., 90:6, 434-438. [OpenAIRE]

[12] Tovar E. G., 1985, Hypernetted Chain Approximation for the Distribution of Ions Around a Cylindrical Electrode. II. Numerical Solution for a Model Cylindrical Polyelectrolyte, J. Chem. Phys., 83, 361-372. [OpenAIRE]

[13] Simonin J.P., Blum L. and Turq P., 1996, Real Ionic Solutions in the Mean Spherical Approximations. 1. Simple Salts in the Primitive Model, J. Phys. Chem., 100, 7704-7709. [OpenAIRE]

[14] Fawcett W. R. and Tikanen A. C., 1996, Role of Solvent Permittivity in Estimation of Electrolyte Activity Coefficients on the Basis of the Mean Spherical Approximation, J. Phys. Chem. 100, 4251-4255. [OpenAIRE]

Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue