publication . Article . Conference object . Preprint . 2017

Near-field heat transfer between graphene/hBN multilayers

Bo Zhao; Brahim Guizal; Zhuomin M. Zhang; Shanhui Fan; Mauro Antezza;
Open Access English
  • Published: 30 Jun 2017
  • Publisher: HAL CCSD
  • Country: France
Abstract
We study the radiative heat transfer between multilayer structures made by a periodic repetition of a graphene sheet and a hexagonal boron nitride (hBN) slab. Surface plasmons in a monolayer graphene can couple with a hyperbolic phonon polaritons in a single hBN film to form hybrid polaritons that can assist photon tunneling. For periodic multilayer graphene/hBN structures, the stacked metallic/dielectric array can give rise to a further effective hyperbolic behavior, in addition to the intrinsic natural hyperbolic behavior of hBN. The effective hyperbolicity can enable more hyperbolic polaritons that enhance the photon tunneling and hence the near-field heat tr...
Subjects
arXiv: Physics::OpticsCondensed Matter::Other
free text keywords: [PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph], [PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas], [PHYS.PHYS.PHYS-ATM-PH]Physics [physics]/Physics [physics]/Atomic and Molecular Clusters [physics.atm-clus], [PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph], [PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics], Near-field, Radiative heat transfer, graphene, hBN, [PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph], Physics - Optics, Phonon, Radiative cooling, Condensed matter physics, Surface plasmon, law.invention, law, Heat transfer, Physics, Polariton, Thermal radiation, Dielectric
43 references, page 1 of 3

[1] S. Basu, Z. M. Zhang, and C. J. Fu, Int. J. Energy Res. 33, 1203 (2009).

[2] X. L. Liu, L. P. Wang, and Z. M. Zhang, Nanoscale Microscale Thermophys. Eng. 19, 98 (2015).

[3] Z. M. Zhang, Nano/Microscale Heat Transfer (McGrawHill, New York, 2007).

[4] K. Chen, P. Santhanam, S. Sandhu, L. Zhu, and S. Fan, Phys. Rev. B 91, 134301 (2015).

[5] X. Liu and Z. M. Zhang, Nano Energy 26, 353 (2016).

[6] L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, Appl. Phys. Lett. 92, 133106 (2008).

[7] E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Gre et, Nat. Photonics 3, 514 (2009).

[8] S. Shen, A. Narayanaswamy, and G. Chen, Nano Lett. 9, 2909 (2009).

[9] A. C. Jones, B. T. O`Callahan, H. U. Yang, and M. B. Raschke, Prog. Surf. Sci. 88, 349 (2013).

[10] B. Song et al., Nat. Nanotechnol. 10, 253 (2015).

[11] R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, Nat. Nanotechnol. 11, 515 (2016).

[12] J. I. Watjen, B. Zhao, and Z. M. Zhang, Appl. Phys. Lett. 109, 203112 (2016).

[13] K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Gre et, Surface Science Reports 57, 59 (2005).

[14] M. Francoeur, M. P. Meng A~¼ A~§, and R. Vaillon, Appl. Phys. Lett. 93, 043109 (2008).

[15] S. Basu, B. J. Lee, and Z. M. Zhang, J. Heat Transfer 132, 023302 (2010).

43 references, page 1 of 3
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Conference object . Preprint . 2017

Near-field heat transfer between graphene/hBN multilayers

Bo Zhao; Brahim Guizal; Zhuomin M. Zhang; Shanhui Fan; Mauro Antezza;