Multiple Improvements of Multiple Imputation Likelihood Ratio Tests

Subject: Mathematics  Statistics Theory  Statistics  Methodology  Statistics  Computation

References
(22)
Barnard, J. and Rubin, D. B. (1999) Smallsample degrees of freedom with multiple imputation. Biometrika, 86, 948{955.
Bayarri, M. J., Benjamin, D. J., Berger, J. O. and Sellke, T. M. (2016) Rejection odds and rejection ratios: A proposal for statistical practice in testing hypotheses. Journal of Mathematical Psychology, 72, 90{103.
Benjamin, D. J., Berger, J. O., Johannesson, M., Nosek, B. A., Wagenmakers, E.J., Berk, R., Bollen, K. A., Brembs, B., Brown, L., Camerer, C. et al. (2017) Rede ne statistical signi cance. Nature Human Behaviour, 1{5.
Blocker, A. W. and Meng, X.L. (2013) The potential and perils of preprocessing: Building new foundations. Bernoulli, 19, 1176{1211.
Cox, D. R. and Reid, N. (1987) Parameter orthogonality and approximate conditional inference. Journal of the Royal Statistical Society B, 49, 1{39.
Li, K. H., Meng, X.L., Raghunathan, T. E. and Rubin, D. B. (1991a) Signi cance levels from repeated pvalues with multiplyimputed data. Statistica Sinica, 1, 65{92.
Li, K. H., Raghunathan, T. E. and Rubin, D. B. (1991b) Largesample signi cance levels from multiply imputed data using momentbased statistics and an F reference distribution. Journal of the American Statistical Association, 86, 1065{1073.
Meng, X.L. (1994a) Multipleimputation inferences with uncongenial sources of input. Statistical Science, 9, 538{573.
Meng, X.L. (1994b) Posterior predictive pvalues. The Annals of Statistics, 22, 1142{1160.
Meng, X.L. (2002) Discussion of \Bayesian measures of model complexity and t" by Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and Van Der Linde, A. Journal of the Royal Statistical Society B, 64, 633.

Metrics
No metrics available

 Download from


Cite this publication