publication . Preprint . 2017

Tensor Product of Polygonal Cell Complexes

Chien, Yu-Yen;
Open Access English
  • Published: 16 Mar 2017
We introduce the tensor product of polygonal cell complexes, which interacts nicely with the tensor product of link graphs of complexes. We also develop the unique factorization property of polygonal cell complexes with respect to the tensor product, and study the symmetries of tensor products of polygonal cell complexes.
arXiv: Computer Science::Computational GeometryQuantitative Biology::Cell Behavior
free text keywords: Mathematics - Combinatorics, 05E18, 05C76
Download from

[1] W. Ballmann and M. Brin, “Polygonal Complexes and Combinatorial Group Theory”, Geom. Dedicata 50, 165-191, 1994.

[2] Y. Chien, T. Januszkiewicz, I. J. Leary, R. Valle, and R. Vogeler, “Simple Platonic Polygonal Complexes”, in preparation.

[3] W. D¨orfler, “Primfaktorzerlegung und Automorphismen des Kardinalproduktes von Graphen”, Glasnik Mat. 9, 15-27, 1974.

[4] R. Hammack, W. Imrich, and S. Klavˇzar, Handbook of Product Graphs, second edition, CRC Press, 2011.

[5] W. Imrich, “Automorphismen und das kartesische Produkt von Graphen”, O¨sterreich. Akad. Wiss. Math.-Natur. Kl. S.-B. II 177, 203-214, 1969.

[6] S. Mac Lane, Categories for the Working Mathematician, second edition, Springer, 1998.

[7] D. J. Miller, “The automorphism group of a product of graphs”, Proc. Amer. Math. Soc. 25, 24-28, 1970.

[8] R. McKenzie, “Cardinal multiplication of structures with a reflexive relation”, Fund. Math. 70, 59-101, 1971.

[9] J. S´wia¸tkowski, “Trivalent Polygonal Complexes of Nonpositive Curvature and Platonic Symmetry”, Geom. Dedicata 70, 87-110, 1998.

[10] R. Valle, “Polygonal Complexes with Octahedral Links”, PhD thesis, The Ohio State University, 2011.

Any information missing or wrong?Report an Issue