Embedding Versus Immersion in General Relativity

Preprint English OPEN
Monte, Edmundo M. (2009)

We briefly discuss the concepts of immersion and embedding of space-times in higher-dimensional spaces. We revisit the classical work by Kasner in which he constructs a model of immersion of the Schwarzschild exterior solution into a six-dimensional pseudo-Euclidean man... View more
  • References (13)
    13 references, page 1 of 2

    [1] E. Kasner, Am. J. Math. 43, 130 (1921).

    [2] T. Kaluza, Sitzunger. Preuss. Akad. Wiss. Berlin, Phys. Math. K1, 33 (1921). O. Klein, Z. Phys. 37, 895 (1926).

    [3] Nima Arkani-Hamed et al., Phys. Lett. B 429, 263 (1998).

    [4] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999).

    [5] K. Maeda et al., Phys. Rev. D 62, 24012 (2000).

    [6] M. D. Maia and E. M. Monte, Phys. Lett. A 297, 9 (2002).

    [7] R. Kerner, it Ann. Inst. H. Poincar´e 9, 141 (1968).

    [8] For a nice review on embeddings and immersions, see, for instance, H. Goenner, Local Isometric Embedding of Riemannian Manifolds and Einstein's Theory of Gravitation,in General Relativity and Gravitation, I, (A. Held, Plenum Press, New York, 1980). See also, J. Rosen, Rev. Mod. Phys., 37, 204 (1965).

    [9] M. P. Carmo, Riemannian Geometry, (Birkhuser, Boston, 1993).

    [10] M. D. Maia and E. M. Monte, Mat. Contemp., 13, 229 (1997).

  • Metrics
    No metrics available
Share - Bookmark