Transmuted Generalized Inverse Weibull Distribution
- Published: 11 Sep 2013
- 1
- 2
[1] Aryal, G. R., and Tsokos, C. P. (2009). On the transmuted extreme value distribution with application. Nonlinear Analysis: Theory, Methods and Applications, 71(12), e1401-e1407. [OpenAIRE]
[2] Aryal, G. R., and Tsokos, C. P. (2011). Transmuted Weibull Distribution: A Generalization of theWeibull Probability Distribution. European Journal of Pure and Applied Mathematics, 4(2), 89-102.
[3] Barlow R. E., and Proschan F. (1981). Statistical Theory of Reliability and Life Testing, Begin With, Silver Spring, MD,.
[4] Drapella, A. (1993). The complementary weibull distribution: Unknown or just forgotten?. Quality and Reliability Engineering International, 9(4), 383-385. [OpenAIRE]
[5] Gusmo, F. R., Ortega, E. M., and Cordeiro, G. M. (2011). The generalized inverse Weibull distribution. Statistical Papers, 52(3), 591-619.
[6] Gradshteyn, I. S., and Ryzhik, I. M. (2000). Table of Integrals, Series, and Products 6th edn (New York: Academic).
[7] Johnson, N. L., Kotz, S., and Balakrishnan N.(1995). Continuous Univariate Distributions-1, Second Edition, John Wiley and Sons.
[8] Khan, M. S., and King, R. (2013). Transmuted Modified Weibull Distribution: A Generalization of the Modified Weibull Probability Distribution. European Journal of Pure and Applied Mathematics, 6(1), 66-88.
[9] Merovci, F.,(2013). Transmuted Rayleigh distribution. Austrian Journal of Statistics, Volume 42, Number 1, 2131. [OpenAIRE]
[10] Merovci, F.,(2013). Transmuted generalized Rayleigh distribution. Journal of Statistics Applications and Probability, Volume 2,No. 3, 1-12. [OpenAIRE]
[11] Merovci, F.,(2013). Transmuted Lindley distribution. International Journal of Open Problems in Computer Science and Mathematics, Volume 6, No. 2, 63-72.
[12] Mudholkar, G. S., and Kollia, G. D. (1994). Generalized Weibull family: a structural analysis. Communications in statistics-theory and methods, 23(4), 1149-1171. [OpenAIRE]
[13] Miller Jr, R. G. (2011). Survival analysis (Vol. 66). John Wiley and Sons.
[14] Murthy, D. P., Xie, M., and Jiang, R. (2004). Weibull models (Vol. 505). John Wiley and Sons.
[15] Swain, J. J., Venkatraman, S., and Wilson, J. R. (1988). Least-squares estimation of distribution functions in Johnson's translation system. Journal of Statistical Computation and Simulation, 29(4), 271-297. [OpenAIRE]
- 1
- 2