Quantum-Gravity Induced Lorentz Violation and Dynamical Mass Generation

Preprint English OPEN
Mavromatos, Nick E. (2010)
  • Related identifiers: doi: 10.1103/PhysRevD.83.025018
  • Subject: General Relativity and Quantum Cosmology | High Energy Physics - Phenomenology | High Energy Physics - Theory

In Ref. [1] (by J. Alexandre) a minimal extension of (3+1)-dimensional Quantum Electrodynamics has been proposed, which includes Lorentz-Violation (LV) in the form of higher-(spatial)-derivative isotropic terms in the gauge sector, suppressed by a mass scale $M$. The model can lead to dynamical mass generation for charged fermions. In this article I elaborate further on this idea and I attempt to connect it to specific quantum-gravity models, inspired from string/brane theory. Specifically, in the first part of the article, I comment briefly on the gauge dependence of the dynamical mass generation in the approximations of [1], and I propose a possible avenue for obtaining the true gauge-parameter-independent value of the mass by means of Pinch Technique argumentations. In the second part of the work I embed the LV QED model into multibrane world scenarios with a view to provide a geometrical way of enhancing the dynamical mass to phenomenologically realistic values by means of bulk warp metric factors, in an (inverse) Randall-Sundrum hierarchy. Finally in the third part of this note, I demonstrate that such Lorentz Violating QED models may represent parts of a low-energy effective action (of Finsler-Born-Infeld type) of open strings propagating in quantum D0-particle stochastic space-time foam backgrounds, which are viewed as consistent quantum gravity configurations.
  • References (37)
    37 references, page 1 of 4

    [1] J. Alexandre, arXiv:1009.5834 [hep-ph].

    [2] D. Colladay and V. A. Kostelecky, Phys. Rev. D 55, 6760 (1997) [arXiv:hep-ph/9703464]; V. A. Kostelecky and S. Samuel, Phys. Rev. D 40, 1886 (1989); V. A. Kostelecky, arXiv:0802.0581 [gr-qc], and references therein.

    [3] P. Horava, Phys. Rev. D 79, 084008 (2009) [arXiv:0901.3775 [hep-th]].

    [4] see for instance, T. P. Sotiriou, M. Visser and S. Weinfurtner, Phys. Rev. Lett. 102, 251601 (2009) [arXiv:0904.4464 [hep-th]].

    [5] M. Pospelov and Y. Shang, arXiv:1010.5249 [hep-th].

    [6] M. Visser, Phys. Rev. D 80, 025011 (2009) [arXiv:0902.0590 [hep-th]] and references therein.

    [7] See, for instance: D. Anselmi, Eur. Phys. J. C 65, 523 (2010) [arXiv:0904.1849 [hep-ph]]; D. Anselmi and E. Ciuffoli, Phys. Rev. D 81, 085043 (2010) [arXiv:1002.2704 [hep-ph]]; J. Alexandre, K. Farakos, P. Pasipoularides and A. Tsapalis, Phys. Rev. D 81, 045002 (2010) [arXiv:0909.3719 [hep-th]]; J. Alexandre, N. E. Mavromatos and D. Yawitch, arXiv:1009.4811 [hep-ph].

    [8] J. R. Ellis, N. E. Mavromatos and D. V. Nanopoulos, Gen. Rel. Grav. 32, 127 (2000); Phys. Rev. D 61, 027503 (2000); Phys. Rev. D 62, 084019 (2000).

    [9] J. R. Ellis, N. E. Mavromatos and M. Westmuckett, Phys. Rev. D 70, 044036 (2004); ibid. 71, 106006 (2005) .

    [10] J. R. Ellis, N. E. Mavromatos and D. V. Nanopoulos, Phys. Lett. B 665, 412 (2008); arXiv:0912.3428 [astro-ph.CO]; J. Ellis, N. E. Mavromatos and D. V. Nanopoulos, Phys. Lett. B 694, 61 (2010) [arXiv:1004.4167 [astroph.HE]].

  • Similar Research Results (1)
  • Metrics
    No metrics available
Share - Bookmark