publication . Preprint . Article . 2018

Optical design for increased interaction length in a high gradient dielectric laser accelerator

D. Cesar; J. Maxson; P. Musumeci; X. Shen; R.J. England; K.P. Wootton;
Open Access English
  • Published: 03 Jan 2018
Abstract
We present a methodology for designing and measuring pulse front tilt in an ultrafast laser for use in dielectric laser acceleration. Previous research into dielectric laser accelerating modules has focused on measuring high accelerating gradients in novel structures, but has done so only for short electron-laser coupling lengths. Here we demonstrate an optical design to extend the laser-electron interaction to 1mm.
Subjects
arXiv: Physics::OpticsPhysics::Atomic Physics
free text keywords: Physics - Accelerator Physics, Physics - Optics, Nuclear and High Energy Physics, Instrumentation, Coupling, Dielectric, Physics, Acceleration, Ultrashort pulse, Optics, business.industry, business, Pulse front, Laser, law.invention, law
24 references, page 1 of 2

[1] R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelho , Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, R. B. Yoder, Dielectric laser accelerators, Rev. Mod. Phys. 86 (4) (2014) 1337-1389. doi:10.1103/RevModPhys.86.1337. URL http://dx.doi.org/10.1103/RevModPhys.86.1337 [OpenAIRE]

[2] D. Cesar, S. Custodio, J. Maxson, P. Musumeci, X. Shen, E. Threlkeld, R. J. England, A. Hanuka, I. V. Makasyuk, E. A. Peralta, K. P. Wootton, Z. Wu, Nonlinear response in high-field dielectric laser accelerators, arXiv:1707.02364 [physics]ArXiv: 1707.02364. URL http://arxiv.org/abs/1707.02364

[3] K. J. Leedle, A. Ceballos, H. Deng, O. Solgaard, R. F. Pease, R. L. Byer, J. S. Harris, Dielectric laser acceleration of sub-100 keV electrons with silicon dual-pillar grating structures, Opt. Lett. 40 (18) (2015) 4344. doi: 10.1364/OL.40.004344. URL http://dx.doi.org/10.1364/OL.40.004344 [OpenAIRE]

[4] J. McNeur, M. Kozk, N. Schnenberger, K. J. Leedle, H. Deng, A. Ceballos, H. Hoogland, A. Ruehl, I. Hartl, R. Holzwarth, O. Solgaard, J. S. Harris, R. L. Byer, P. Hommelho , Elements of a dielectric laser accelerator, arXiv:1604.07684 [physics]ArXiv: 1604.07684. URL http://arxiv.org/abs/1604.07684

[5] Y. Wei, G. Xia, J. D. A. Smith, C. P. Welsch, Dual-gratings with a Bragg reflector for dielectric laser-driven accelerators, Phys. Plasmas 24 (7) (2017) 073115. doi:10.1063/1.4993206. URL http://aip.scitation.org/doi/full/10.1063/1. 4993206 [OpenAIRE]

[6] M. Kozk, P. Beck, H. Deng, J. McNeur, N. Schnenberger, C. Gaida, F. Stutzki, M. Gebhardt, J. Limpert, A. Ruehl, I. Hartl, O. Solgaard, J. S. Harris, R. L. Byer, P. Hommelho , Acceleration of sub-relativistic electrons with an evanescent optical wave at a planar interface, Opt. Express 25 (16) (2017) 19195-19204. doi:10.1364/OE.25.019195. URL https://doi.org/10.1364/OE.25.019195 [OpenAIRE]

[7] E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, R. L. Byer, Demonstration of electron acceleration in a laser-driven dielectric microstructure, Nature 503 (7474) (2013) 91-94. doi:10.1038/nature12664. URL http://dx.doi.org/10.1038/nature12664 [OpenAIRE]

[8] T. W. Hughes, S. Tan, Z. Zhao, N. V. Sapra, Y. J. Lee, K. J. Leedle, H. Deng, Y. Miao, D. S. Black, M. Qi, O. Solgaard, J. S. Harris, J. Vuckovic, R. L. Byer, S. Fan, On-Chip Laser Power Delivery System for Dielectric Laser Accelerators, arXiv:1709.04441 [physics]ArXiv: 1709.04441. URL http://arxiv.org/abs/1709.04441

[9] J. B. Rosenzweig, E. Arab, G. Andonian, A. Cahill, K. Fitzmorris, A. Fukusawa, P. Hoang, I. Jovanovic, G. Marcus, A. Marinelli, A. Murokh, P. Musumeci, B. Naranjo, B. O'Shea, F. O'Shea, A. Ovodenko, I. Pogorelsky, S. Putterman, K. Roberts, M. Shumail, S. Tantawi, A. Valloni, V. Yakimenko, G. Xu, R. Zgadzaj, E. Gaul, M. C. Downer, The GALAXIE all-optical FEL project, AIP Conf. Proc. 1507 (1) (2012) 493-498. doi:10.1063/1.4773746. URL http://dx.doi.org/10.1063/1.4773746 [OpenAIRE]

[10] T. Plettner, P. P. Lu, R. L. Byer, Proposed few-optical cycle laser-driven particle accelerator structure, Phys. Rev. ST Accel. Beams 9 (11) (2006) 111301. doi:10.1103/PhysRevSTAB.9.111301. URL http://dx.doi.org/10.1103/PhysRevSTAB.9.111301 [OpenAIRE]

[11] J. Hebling, K.-L. Yeh, M. C. Ho mann, B. Bartal, K. A. Nelson, Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities, J. Opt. Soc. Am. B 25 (7) (2008) B6-B19. doi:10.1364/JOSAB.25.0000B6. URL http://dx.doi.org/10.1364/JOSAB.25.0000B6 [OpenAIRE]

[12] J. Hebling, Derivation of the pulse front tilt caused by angular dispersion, Opt. Quantum Electron. 28 (12) (1996) 1759-1763. doi:10.1007/ BF00698541. URL http://dx.doi.org/10.1007/BF00698541 [OpenAIRE]

[13] E. Treacy, Optical pulse compression with di raction gratings, IEEE Quantum Opt. 5 (9) (1969) 454-458. doi:10.1109/JQE.1969. 1076303. URL http://dx.doi.org/10.1109/JQE.1969.1076303 [OpenAIRE]

[14] D. Kreier, P. Baum, Avoiding temporal distortions in tilted pulses, Opt. Lett. 37 (12) (2012) 2373-2375. doi:10.1364/OL.37.002373. URL http://dx.doi.org/10.1364/OL.37.002373 [OpenAIRE]

[15] A. G. Kostenbauder, Ray-pulse matrices: a rational treatment for dispersive optical systems, IEEE J. Quantum Electron. 26 (6) (1990) 1148- 1157. doi:10.1109/3.108113. URL http://dx.doi.org/10.1109/3.108113 [OpenAIRE]

24 references, page 1 of 2
Abstract
We present a methodology for designing and measuring pulse front tilt in an ultrafast laser for use in dielectric laser acceleration. Previous research into dielectric laser accelerating modules has focused on measuring high accelerating gradients in novel structures, but has done so only for short electron-laser coupling lengths. Here we demonstrate an optical design to extend the laser-electron interaction to 1mm.
Subjects
arXiv: Physics::OpticsPhysics::Atomic Physics
free text keywords: Physics - Accelerator Physics, Physics - Optics, Nuclear and High Energy Physics, Instrumentation, Coupling, Dielectric, Physics, Acceleration, Ultrashort pulse, Optics, business.industry, business, Pulse front, Laser, law.invention, law
24 references, page 1 of 2

[1] R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelho , Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, R. B. Yoder, Dielectric laser accelerators, Rev. Mod. Phys. 86 (4) (2014) 1337-1389. doi:10.1103/RevModPhys.86.1337. URL http://dx.doi.org/10.1103/RevModPhys.86.1337 [OpenAIRE]

[2] D. Cesar, S. Custodio, J. Maxson, P. Musumeci, X. Shen, E. Threlkeld, R. J. England, A. Hanuka, I. V. Makasyuk, E. A. Peralta, K. P. Wootton, Z. Wu, Nonlinear response in high-field dielectric laser accelerators, arXiv:1707.02364 [physics]ArXiv: 1707.02364. URL http://arxiv.org/abs/1707.02364

[3] K. J. Leedle, A. Ceballos, H. Deng, O. Solgaard, R. F. Pease, R. L. Byer, J. S. Harris, Dielectric laser acceleration of sub-100 keV electrons with silicon dual-pillar grating structures, Opt. Lett. 40 (18) (2015) 4344. doi: 10.1364/OL.40.004344. URL http://dx.doi.org/10.1364/OL.40.004344 [OpenAIRE]

[4] J. McNeur, M. Kozk, N. Schnenberger, K. J. Leedle, H. Deng, A. Ceballos, H. Hoogland, A. Ruehl, I. Hartl, R. Holzwarth, O. Solgaard, J. S. Harris, R. L. Byer, P. Hommelho , Elements of a dielectric laser accelerator, arXiv:1604.07684 [physics]ArXiv: 1604.07684. URL http://arxiv.org/abs/1604.07684

[5] Y. Wei, G. Xia, J. D. A. Smith, C. P. Welsch, Dual-gratings with a Bragg reflector for dielectric laser-driven accelerators, Phys. Plasmas 24 (7) (2017) 073115. doi:10.1063/1.4993206. URL http://aip.scitation.org/doi/full/10.1063/1. 4993206 [OpenAIRE]

[6] M. Kozk, P. Beck, H. Deng, J. McNeur, N. Schnenberger, C. Gaida, F. Stutzki, M. Gebhardt, J. Limpert, A. Ruehl, I. Hartl, O. Solgaard, J. S. Harris, R. L. Byer, P. Hommelho , Acceleration of sub-relativistic electrons with an evanescent optical wave at a planar interface, Opt. Express 25 (16) (2017) 19195-19204. doi:10.1364/OE.25.019195. URL https://doi.org/10.1364/OE.25.019195 [OpenAIRE]

[7] E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, R. L. Byer, Demonstration of electron acceleration in a laser-driven dielectric microstructure, Nature 503 (7474) (2013) 91-94. doi:10.1038/nature12664. URL http://dx.doi.org/10.1038/nature12664 [OpenAIRE]

[8] T. W. Hughes, S. Tan, Z. Zhao, N. V. Sapra, Y. J. Lee, K. J. Leedle, H. Deng, Y. Miao, D. S. Black, M. Qi, O. Solgaard, J. S. Harris, J. Vuckovic, R. L. Byer, S. Fan, On-Chip Laser Power Delivery System for Dielectric Laser Accelerators, arXiv:1709.04441 [physics]ArXiv: 1709.04441. URL http://arxiv.org/abs/1709.04441

[9] J. B. Rosenzweig, E. Arab, G. Andonian, A. Cahill, K. Fitzmorris, A. Fukusawa, P. Hoang, I. Jovanovic, G. Marcus, A. Marinelli, A. Murokh, P. Musumeci, B. Naranjo, B. O'Shea, F. O'Shea, A. Ovodenko, I. Pogorelsky, S. Putterman, K. Roberts, M. Shumail, S. Tantawi, A. Valloni, V. Yakimenko, G. Xu, R. Zgadzaj, E. Gaul, M. C. Downer, The GALAXIE all-optical FEL project, AIP Conf. Proc. 1507 (1) (2012) 493-498. doi:10.1063/1.4773746. URL http://dx.doi.org/10.1063/1.4773746 [OpenAIRE]

[10] T. Plettner, P. P. Lu, R. L. Byer, Proposed few-optical cycle laser-driven particle accelerator structure, Phys. Rev. ST Accel. Beams 9 (11) (2006) 111301. doi:10.1103/PhysRevSTAB.9.111301. URL http://dx.doi.org/10.1103/PhysRevSTAB.9.111301 [OpenAIRE]

[11] J. Hebling, K.-L. Yeh, M. C. Ho mann, B. Bartal, K. A. Nelson, Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities, J. Opt. Soc. Am. B 25 (7) (2008) B6-B19. doi:10.1364/JOSAB.25.0000B6. URL http://dx.doi.org/10.1364/JOSAB.25.0000B6 [OpenAIRE]

[12] J. Hebling, Derivation of the pulse front tilt caused by angular dispersion, Opt. Quantum Electron. 28 (12) (1996) 1759-1763. doi:10.1007/ BF00698541. URL http://dx.doi.org/10.1007/BF00698541 [OpenAIRE]

[13] E. Treacy, Optical pulse compression with di raction gratings, IEEE Quantum Opt. 5 (9) (1969) 454-458. doi:10.1109/JQE.1969. 1076303. URL http://dx.doi.org/10.1109/JQE.1969.1076303 [OpenAIRE]

[14] D. Kreier, P. Baum, Avoiding temporal distortions in tilted pulses, Opt. Lett. 37 (12) (2012) 2373-2375. doi:10.1364/OL.37.002373. URL http://dx.doi.org/10.1364/OL.37.002373 [OpenAIRE]

[15] A. G. Kostenbauder, Ray-pulse matrices: a rational treatment for dispersive optical systems, IEEE J. Quantum Electron. 26 (6) (1990) 1148- 1157. doi:10.1109/3.108113. URL http://dx.doi.org/10.1109/3.108113 [OpenAIRE]

24 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Preprint . Article . 2018

Optical design for increased interaction length in a high gradient dielectric laser accelerator

D. Cesar; J. Maxson; P. Musumeci; X. Shen; R.J. England; K.P. Wootton;