Playing SNES in the Retro Learning Environment

Preprint English OPEN
Bhonker, Nadav; Rozenberg, Shai; Hubara, Itay;
(2016)
  • Subject: Computer Science - Artificial Intelligence | Computer Science - Learning
    acm: ComputingMilieux_PERSONALCOMPUTING

Mastering a video game requires skill, tactics and strategy. While these attributes may be acquired naturally by human players, teaching them to a computer program is a far more challenging task. In recent years, extensive research was carried out in the field of reinfo... View more
  • References (19)
    19 references, page 1 of 2

    Libretro. www.libretro.com. URL www.libretro.com. Accessed: 2016-11-03.

    M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253-279, jun 2013.

    B. Bischoff, D. Nguyen-Tuong, I.-H. Lee, F. Streichert, and A. Knoll. Hierarchical reinforcement learning for robot navigation. In ESANN, 2013.

    G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

    M. Campbell, A. J. Hoane, and F.-h. Hsu. Deep blue. Artificial intelligence, 134(1):57-83, 2002.

    X. Du, J. Zhai, and K. Lv. Algorithm trading using q-learning and recurrent reinforcement learning. positions, 1:1.

    V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

    V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement learning. Nature, 518(7540):529-533, 2015.

    V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. arXiv preprint arXiv:1602.01783, 2016.

    A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. De Maria, V. Panneershelvam, M. Suleyman, C. Beattie, S. Petersen, et al. Massively parallel methods for deep reinforcement learning. arXiv preprint arXiv:1507.04296, 2015.

  • Related Research Results (1)
  • Related Organizations (1)
  • Metrics
Share - Bookmark