Frobenius splitting of thick flag manifolds of Kac-Moody algebras

Preprint English OPEN
Kato, Syu;
  • Subject: Mathematics - Algebraic Geometry | Mathematics - Representation Theory
    arxiv: Mathematics::Representation Theory | Mathematics::Algebraic Geometry | Mathematics::Quantum Algebra

We explain that the Pl\"ucker relations provide the defining equations of the thick flag manifold associated to a Kac-Moody algebra. This naturally transplant the result of Kumar-Mathieu-Schwede about the Frobenius splitting of thin flag manifolds to the thick case. As ... View more
  • References (19)
    19 references, page 1 of 2

    [1] Susumu Ariki, Victor Kreiman, and Shunsuke Tsuchioka. On the tensor product of two basic representations of Uv(sble). Adv. Math., 218(1):28-86, 2008.

    [2] Michel Brion and Shrawan Kumar. Frobenius splitting methods in geometry and representation theory, volume 231 of Progress in Mathematics. Birkh¨auser Boston, Inc., Boston, MA, 2005.

    [3] A. Grothendieck. E´l´ements de g´eom´etrie alg´ebrique. I. Le langage des sch´emas. Inst. Hautes E´tudes Sci. Publ. Math., (4):228, 1960.

    [4] Robin Hartshorne. Algebraic geometry. Springer- Verlag, 1977.

    [5] I. Heckenberger and S. Kolb. On the Bernstein-Gelfand-Gelfand resolution for KacMoody algebras and quantized enveloping algebras. Transform. Groups, 12(4):647-655, 2007.

    [6] Victor G. Kac. Infinite-dimensional Lie algebras. Cambridge University Press, Cambridge, third edition, 1990.

    [7] Victor G. Kac and Dale H. Peterson. Regular functions on certain infinite-dimensional groups. In Arithmetic and geometry, Vol. II, volume 36 of Progr. Math., pages 141-166. Birkh¨auser Boston, Boston, MA, 1983.

    [8] Masaki Kashiwara. The flag manifold of Kac-Moody Lie algebra. In Proceedings of the JAMI Inaugural Conference, supplement to Amer. J. Math. the Johns Hopkins University Press, 1989.

    [9] Masaki Kashiwara. Kazhdan-Lusztig conjecture for a symmetrizable Kac-Moody Lie algebra. In The Grothendieck Festschrift, Vol. II, volume 87 of Progr. Math., pages 407-433. Birkh¨auser Boston, Boston, MA, 1990.

    [10] Masaki Kashiwara. Crystal bases of modified quantized enveloping algebra. Duke Math. J., 73(2):383-413, 1994.

  • Metrics
Share - Bookmark