## A characterization of Clifford parallelism by automorphisms

*Löwen, Rainer*;

- Publisher: MSP
- Journal: issn: 2640-7337
Related identifiers: doi: 10.2140/iig.2019.17.43 - Subject: Clifford parallelism | automorphism group | 51H10 | 51A15 | 51M30 | 51H10, 51A15, 51M30 | topological parallelism | Mathematics - Geometric Topology

- References (11) 11 references, page 1 of 2
- 1
- 2

[1] M. Berger, Geometry II, Berlin, Heidelberg, New York Tokyo: Springer 1987.

[2] D. Betten and R. Riesinger, Generalized line stars and topological parallelisms of the real projective 3-space. J. Geometry 91, 1-20, 2008.

[3] D. Betten and R. Riesinger, Parallelisms of PG(3; R) composed of non-regular spreads, Aequationes Math. 81, 227-250, 2011.

[4] D. Betten and R. Riesinger, Clifford parallelism: old and new definitions, and their use. J. Geometry 103, No. 1, 31-73, 2012

[5] D. Betten and R. Riesinger, Collineation groups of topological parallelisms, Adv. in Geometry 14, 175 - 189, 2014.

[6] D. Betten and R. Riesinger, Automorphisms of some topological regular parallelisms of PG(3; R), Results in Math. 66, 291-326, 2014.

[7] D. Betten and R. Lo¨wen, Compactness of the automorphism group of a topological parallelism on real projective 3-space, arXiv:1702.02837

[8] W. Klingenberg, Lineare Algebra und Geometrie, Berlin, Heidelberg, New York Tokyo: Springer 1984.

[9] H. Salzmann, D. Betten, T. Grundho¨fer, H. H¨ahl, R. Lo¨wen, M. Stroppel, Compact projective planes, Berlin etc.: de Gruyter 1995.

[10] J. A. Tyrrell and J. G. Semple, Generalized Clifford Parallelism, Cambridge University Press, 1971.

- Similar Research Results (4)
- Metrics No metrics available

- Download from

- Cite this publication