A characterization of Clifford parallelism by automorphisms

Related identifiers: doi: 10.2140/iig.2019.17.43 
Subject: 51H10, 51A15, 51M30  Mathematics  Geometric Topology

References
(11)
11 references, page 1 of 2
 1
 2
[1] M. Berger, Geometry II, Berlin, Heidelberg, New York Tokyo: Springer 1987.
[2] D. Betten and R. Riesinger, Generalized line stars and topological parallelisms of the real projective 3space. J. Geometry 91, 120, 2008.
[3] D. Betten and R. Riesinger, Parallelisms of PG(3; R) composed of nonregular spreads, Aequationes Math. 81, 227250, 2011.
[4] D. Betten and R. Riesinger, Clifford parallelism: old and new definitions, and their use. J. Geometry 103, No. 1, 3173, 2012
[5] D. Betten and R. Riesinger, Collineation groups of topological parallelisms, Adv. in Geometry 14, 175  189, 2014.
[6] D. Betten and R. Riesinger, Automorphisms of some topological regular parallelisms of PG(3; R), Results in Math. 66, 291326, 2014.
[7] D. Betten and R. Lo¨wen, Compactness of the automorphism group of a topological parallelism on real projective 3space, arXiv:1702.02837
[8] W. Klingenberg, Lineare Algebra und Geometrie, Berlin, Heidelberg, New York Tokyo: Springer 1984.
[9] H. Salzmann, D. Betten, T. Grundho¨fer, H. H¨ahl, R. Lo¨wen, M. Stroppel, Compact projective planes, Berlin etc.: de Gruyter 1995.
[10] J. A. Tyrrell and J. G. Semple, Generalized Clifford Parallelism, Cambridge University Press, 1971.

Similar Research Results
(4)

Metrics
No metrics available

 Download from


Cite this publication