Wiener-Hopf operators on spaces of functions on R+ with values in a Hilbert space

Preprint English OPEN
Petkova, Violeta (2006)
  • Subject: Mathematics - Functional Analysis

A Wiener-Hopf operator on a Banach space of functions on R+ is a bounded operator T such that P^+S_{-a}TS_a=T, for every positive a, where S_a is the operator of translation by a. We obtain a representation theorem for the Wiener-Hopf operators on a large class of functions on R+ with values in a separable Hilbert space.
  • References (7)

    [1] I. M. Bund, Birnbaum-Orlicz spaces of functions on groups, Pacific J. Math. 58 (1975), 351-359.

    [2] G.I. Gaudry, B.R.F. Jefferies, W.J. Ricker, Vector-valued multipliers: convolution with operator-valued measures, Dissertations Math. 385 (2000).

    [3] E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. (1957).

    [4] V. Petkova, Symbole d'un multiplicateur sur L2ω(R), Bull. Sci. Math. 128 (2004), 391-415.

    [5] V. Petkova, Wiener-Hopf operators on L2ω(R+), Arch. Math.(Basel), 84 (2005), 311-324. 24

    [6] V. Petkova, Multipliers on spaces of functions on a locally compact abelian group with values in a Hilbert space, Serdica Math. J. 32 (2006), 215-226.

    [7] G. Roos, Analyse et G´eom´etrie, M´ethodes hilbertiennes, Dunod, Paris, 2002. Violeta Petkova, Universit´e Paul S´ebatier,, UFR: MIG, Laboratoire Emile Picard, 118 route de Narbonne, 31062 Toulouse Cedex 4, France., E-mail address:

  • Metrics
    No metrics available
Share - Bookmark