publication . Preprint . Other literature type . Article . 2017

Efficient Tensor Completion for Color Image and Video Recovery: Low-Rank Tensor Train

Johann A. Bengua; Ho N. Phien; Hoang Duong Tuan; Minh N. Do;
Open Access English
  • Published: 01 May 2017
Comment: Submitted to the IEEE Transactions on Image Processing. arXiv admin note: substantial text overlap with arXiv:1601.01083
free text keywords: Computer Science - Numerical Analysis, Computer Science - Data Structures and Algorithms, Matricization, Mathematics, Cartesian tensor, Tensor contraction, Pattern recognition, Rank (linear algebra), Combinatorics, Algorithm, Tensor product network, Artificial intelligence, business.industry, business, Tensor product, Tensor, Tensor (intrinsic definition)
48 references, page 1 of 4

[1] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM Review, vol. 51, no. 3, pp. 455-500, 2009.

[2] M. Vasilescu and D. Terzopoulos, “Multilinear subspace analysis of image ensembles,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 2, June 2003, pp. 93-99.

[3] J.-T. Sun, H.-J. Zeng, H. Liu, Y. Lu, and Z. Chen, “Cubesvd: A novel approach to personalized web search,” in Proc. 14th Int'l World Wide Web Conf. (WWW ', 05), 2005, pp. 382-390. [OpenAIRE]

[4] T. Franz, A. Schultz, S. Sizov, and S. Staab, “Triplerank: Ranking semantic web data by tensor decomposition,” in The Semantic Web - ISWC 2009. Springer Berlin Heidelberg, 2009, vol. 5823, pp. 213- 228.

[5] J. Carroll and J.-J. Chang, “Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition,” Psychometrika, vol. 35, no. 3, pp. 283-319, 1970.

[6] R. A. Harshman, “Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multi-modal factor analysis,” UCLA Working Papers in Phonetics, vol. 16, no. 1, p. 84, 1970.

[7] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,” Psychometrika, vol. 31, no. 3, pp. 279-311, Sep 1966.

[8] I. V. Oseledets, “Tensor-train decomposition,” SIAM J. Sci. Comput., vol. 33, no. 5, pp. 2295-2317, Jan 2011. [OpenAIRE]

[9] M. Fannes, B. Nachtergaele, and R. Werner, “Finitely correlated states on quantum spin chains,” Comm. Math. Phys., vol. 144, no. 3, pp. 443- 490, 1992. [OpenAIRE]

[10] A. Klümper, A. Schadschneider, and J. Zittartz, “Matrix product ground states for one-dimensional spin-1 quantum antiferromagnets,” EPL, vol. 24, no. 4, p. 293, 1993. [OpenAIRE]

[11] D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I. Cirac, “Matrix product state representations,” Quant. Info. Comput., vol. 7, no. 5, pp. 401-430, 2007.

[12] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding algorithm for matrix completion,” SIAM J. Optim., vol. 20, no. 4, pp. 1956-1982, Jan 2010.

[13] S. Ma, D. Goldfarb, and L. Chen, “Fixed point and Bregman iterative methods for matrix rank minimization,” Math. Programm., vol. 128, no. 1-2, pp. 321-353, Sep 2009.

[14] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization,” SIAM Rev., vol. 52, no. 3, pp. 471-501, Jan 2010.

[15] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for estimating missing values in visual data,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 35, no. 1, pp. 208-220, Jan 2013.

48 references, page 1 of 4
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue