publication . Preprint . 2014

Detection of Nonlocal Spin Entanglement by Light Emission from a Superconducting p-n Junction

Schroer, Alexander; Recher, Patrik;
Open Access English
  • Published: 30 Dec 2014
We model a superconducting p-n junction in which the n- and the p-sides are contacted through two optical quantum dots (QDs), each embedded into a photonic nanocavity. Whenever a Cooper pair is transferred from the n-side to the p-side, two photons are emitted. When the two electrons of a Cooper pair are transported through different QDs, polarization-entangled photons are created, provided that the Cooper pairs retain their spin singlet character while being spatially separated on the two QDs. We show that a CHSH Bell-type measurement is able to detect the entanglement of the photons over a broad range of microscopic parameters, even in the presence of parasiti...
arXiv: Physics::OpticsCondensed Matter::Mesoscopic Systems and Quantum Hall Effect
free text keywords: Condensed Matter - Mesoscale and Nanoscale Physics, Condensed Matter - Superconductivity, Quantum Physics
Related Organizations
Funded by
Source of Electron Entanglement in Nano Devices
  • Funder: European Commission (EC)
  • Project Code: 271554
  • Funding stream: FP7 | SP1 | ICT
FET FP7FET Open: Challenging current thinking
FET FP7FET Open: Source of Electron Entanglement in Nano Devices
Download from
70 references, page 1 of 5

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, England, 2000).

[2] M.-S. Choi, C. Bruder, and D. Loss, Phys. Rev. B 62, 13569 (2000).

[3] J. Torres and T. Martin, Eur. Phys. J. B 12, 319 (1999).

[4] G. Falci, D. Feinberg, and F. W. J. Hekking, Europhys. Lett. 54, 255 (2001).

[5] P. Recher, E. V. Sukhorukov, and D. Loss, Phys. Rev. B 63, 165314 (2001).

[6] G. Lesovik, T. Martin, and G. Blatter, Eur. Phys. J. B 24, 287 (2001).

[7] P. Recher and D. Loss, Phys. Rev. B 65, 165327 (2002).

[8] C. Bena, S. Vishveshwara, L. Balents, and M. P. A. Fisher, Phys. Rev. Lett. 89, 037901 (2002).

[9] P. Recher and D. Loss, Phys. Rev. Lett. 91, 267003 (2003).

[10] A. Levy Yeyati, F. S. Bergeret, A. Martin-Rodero, and T. M. Klapwijk, Nat. Phys. 3, 455 (2007).

[11] J. Cayssol, Phys. Rev. Lett. 100, 147001 (2008).

[12] K. Sato, D. Loss, and Y. Tserkovnyak, Phys. Rev. Lett. 105, 226401 (2010).

[13] L. Hofstetter, S. Csonka, J. Nygard, and C. Schonenberger, Nature (London) 461, 960 (2009).

[14] L. G. Herrmann, F. Portier, P. Roche, A. Levy Yeyati, T. Kontos, and C. Strunk, Phys. Rev. Lett. 104, 026801 (2010).

[15] A. Das, Y. Ronen, M. Heiblum, D. Mahalu, A. V. Kretinin, and H. Shtrikman, Nat. Commun. 3, 1165 (2012).

70 references, page 1 of 5
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue