Why Does Zipf's Law Break Down in Rank-Size Distribution of Cities?

Preprint English OPEN
Kuninaka, Hiroto; Matsushita, Mitsugu;
  • Related identifiers: doi: 10.1143/JPSJ.77.114801
  • Subject: Physics - Data Analysis, Statistics and Probability | Physics - Physics and Society

We study rank-size distribution of cities in Japan on the basis of data analysis. From the census data after World War II, we find that the rank-size distribution of cities is composed of two parts, each of which has independent power exponent. In addition, the power ex... View more
  • References (32)
    32 references, page 1 of 4

    Fig. 2. Rank-size distribution of cities in Japan from 1950 to 2005.

    1) M. E. J. Newman: Contemp. Phys. 46 (2005) 323.

    2) A. Clauset, C. R. Shalizi, and M. E. J. Newman: physics/0706.1062.

    3) R. B. Baldwin: Astron. J. 69 (1964) 377.

    4) See, e.g., D. L. Turcotte: Fractals and Chaos in Geology and Geophysics (Cambridge University Press, Cambridge, 1992).

    5) Y. Sasaki, N. Kobayashi, S. Ouchi and M. Matsushita: J. Phys. Soc. Jpn. 75 (2006) 074804.

    6) H. Aoyama, W. Souma, and Y. Fujiwara: Physica A 324 (2003) 352.

    7) T. Ishii and M. Matsushita: J. Phys. Soc. Jpn. 61 (1992) 3474.

    8) E. W. Montroll and M. F. Shlesinger: Proc. Natl. Acad. Sci. U.S.A. 79 (1982) 3380.

    9) O. Dura´n: Dr. Thesis, Fakulta¨t Mathematik und Physik, Universita¨t Stuttgart, Stuttgart (2006).

  • Metrics
Share - Bookmark