publication . Article . Other literature type . Preprint . 2012

Spin dynamics in tunneling decay of a metastable state

Yue Ban; E. Ya. Sherman;
Open Access
  • Published: 31 May 2012 Journal: Physical Review A, volume 85 (issn: 1050-2947, eissn: 1094-1622, Copyright policy)
  • Publisher: American Physical Society (APS)
Abstract
We analyze spin dynamics in the tunneling decay of a metastable localized state in the presence of spin-orbit coupling. We find that the spin polarization at short time scales is affected by the initial state while at long time scales both the probability- and the spin density exhibit diffraction-in-time phenomenon. We find that in addition to the tunneling time the tunneling in general can be characterized by a new parameter, the tunneling length. Although the tunneling length is independent on the spin-orbit coupling, it can be accessed by the spin rotation measurement.
Subjects
arXiv: Condensed Matter::Strongly Correlated ElectronsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter::Superconductivity
free text keywords: Atomic and Molecular Physics, and Optics, Quantum Physics, Condensed Matter - Mesoscale and Nanoscale Physics, Coupling, Spin polarization, Tunneling length, Condensed matter physics, Matter wave, Spin-½, Spin dynamics, Physics, Quantum tunnelling, Metastability
36 references, page 1 of 3

[1] I. Zˇuti`c, J. Fabian and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).

[2] S. Amasha, K. MacLean, I. P. Radu, D. M. Zumbu¨hl, M. A. Kastner, M. P. Hanson, and A. C. Gossard, Phys. Rev. B 78, 041306(R) (2008).

[3] P. Stano and P. Jacquod, Phys. Rev. B 82, 125309 (2010).

[4] P. Stano and J. Fabian, Phys. Rev. B 72, 155410 (2005).

[5] R. Romo and S. E. Ulloa, Phys. Rev. B 72, 121305(R) (2005).

[6] I. Malajovich, J. M. Kikkawa, and D. D. Awschalom, J.J. Berry and N. Samarth, Phys. Rev. Lett. 84, 1015 (2000).

[7] D. D. Awschalom and M. E. Flatt´e, Nat. Phys. 3, 153 (2007).

[8] T. D. Stanescu, B. Anderson, and V. Galitski, Phys. Rev. A 78, 023616 (2008).

[9] X.-J. Liu, M. F. Borunda, X. Liu, and J. Sinova, Phys. Rev. Lett. 102, 046402 (2009).

[10] C. Wang, C. Gao, C.-M. Jian, and H. Zhai, Phys. Rev. Lett. 105, 160403 (2010).

[11] Y.-J. Lin, K. Jimenez-Garcia, and I. B. Spielman, Nature 471, 83 (2011).

[12] D. L. Campbell, G. Juzeliu˜nas, and I. B. Spielman, Phys. Rev. A 84, 025602 (2011)

[13] M. M. Glazov, P. S. Alekseev, M. A. Odnoblyudov, V. M. Chistyakov, S. A. Tarasenko, and I. N. Yassievich, Phys. Rev. B 71, 155313 (2005).

[14] D. Khomitsky and E. Ya. Sherman, EPL 90, 27010 (2010).

[15] X. Zheng, F. Wang, C.-Y. Yam, Y. Mo, and G.H. Chen, Phys. Rev. B 75, 195127 (2007), Y. Wang, C.-Y. Yam, G.H. Chen, T. Frauenheim, and T.A. Niehaus, Chem. Phys. 391, 69 (2011), C.-Y. Yam, X. Zheng, G.H. Chen, Y. Wang, Th. Frauenheim, and T.A. Niehaus, Phys. Rev. B 83, 245448 (2011).

36 references, page 1 of 3
Any information missing or wrong?Report an Issue