# On a higher order multi-term time-fractional partial differential equation involving Caputo-Fabrizio derivative

- Published: 18 Aug 2017

- 1
- 2

[1] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Frac. Differ. Appl. 1(2), 1-13 (2015).

[2] M. Caputo and M. Fabrizio, Applications of New Time and Spatial Fractional Derivatives with Exponential Kernels, Progr. Frac. Differ. Appl. 2(1), 1-11 (2016).

[3] J. Losada, J.J. Nieto, Properties of a New Fractional Derivative without Singular Kernel, Progr. Frac. Differ. Appl. 1(2), 87-92 (2015).

[4] A. Atangana, B.S.T. Alkahtani, New model of groundwater flowing within a confine aquifer: application of Caputo-Fabrizio derivative, Arab J. Geosci. 9: 8 (2016) DOI 10.1007/s12517-015-2060-8

[5] A. Atangana, D. Baleanu, Caputo-Fabrizio Derivative Applied to Groundwater Flow within Confined Aquifer, J. Eng. Mech., D4016005, 1-5 (2016) DOI: 10.1061/(ASCE)EM.1943-7889.0001091

[6] A. Atangana, B.S.T. Alkahtani, Extension of the resistance, inductance, capacitance electrical circuit to fractional derivative without singular kernel, Advances in Mechanical Engineering, 7(6), 1-6 (2015) DOI: 10.1177/1687814015591937

[7] B.S.T. Alkahtani, A. Atangana, Controlling the wave movement on the surface of shallow water with the Caputo-Fabrizio derivative with fractional order, Chaos, Solitons and Fractals, 89, 539-546 (2016) DOI: 10.1016/j.chaos.2016.03.012 [OpenAIRE]

[8] A. Atangana, On the new fractional derivative and application to nonlinear Fisher's reaction-diffusion equation, Applied Mathematics and Computaton, 273, 948-956 (2016) DOI: 10.1016/j.amc.2015.10.021 [OpenAIRE]

[9] J.F. Go´mez-Aguilar et al, Modeling of a Mass-Spring-Damper System by Fractional Derivatives with and without a Singular Kernel, Entropy, 17, 6289-6303 (2015) DOI:10.3390/e17096289 [OpenAIRE]

[10] V.F. Morales-Delgado et al, On the solutions of fractional order of evolution equations, Eur. Phys. J. Plus, 132:47 (2017) DOI: 10.1140/epjp/i2017-11341-0

[11] F. Gao et al, Fractional Maxwell fluid with fractional derivative without singular kernel, Thermal Science, 20(S3), S871-S877 (2016)

[12] Farhad Ali et al, Application of Caputo-Fabrizio derivatives to MHD free convection flow of generalized Walters'-B fluid model, Eur. Phys. J. Plus, 131: 377 (2016) DOI 10.1140/epjp/i2016-16377-x

[13] A. Atangana, J.J. Nieto, Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel, Advances in Mechanical Engineering, 7(10), 1-7 (2015) DOI: 10.1177/1687814015613758

[14] J.F. Go´mez-Aguilar et al, Modeling diffusive transport with a fractional derivative without singular kernel, Physica A, 447, 467-481 (2016) DOI: 10.1016/j.physa.2015.12.066

[15] J. Hristov, Transient heat diffusion with a non-singular fading memory, Thermal Science, 20(2), 757-762 (2016) [OpenAIRE]

- 1
- 2