publication . Part of book or chapter of book . Article . Preprint . Conference object . 2005

dynamic shannon coding

T. Gagie;
Restricted
  • Published: 30 Mar 2005
  • Publisher: Springer Berlin Heidelberg
Abstract
Comment: 6 pages; conference version presented at ESA 2004; journal version submitted to IEEE Transactions on Information Theory
Subjects
ACM Computing Classification System: Data_CODINGANDINFORMATIONTHEORY
free text keywords: Shannon's source coding theorem, Huffman coding, symbols.namesake, symbols, Mathematics, Shannon coding, Discrete mathematics, Theoretical computer science, Tunstall coding, Arithmetic coding, Shannon–Fano coding, Variable-length code, Algorithm, Modified Huffman coding, Signal Processing, Information Systems, Computer Science Applications, Coding (social sciences), Information processing, Data compression, ENCODE, Empirical entropy, Alphabet, Combinatorics, Computer Science - Information Theory, E.4
Related Organizations
17 references, page 1 of 2

[1] C. E. Shannon, “A mathematical theory of communication,” Bell System Technical Journal, vol. 27, pp. 379-423, 623-656, 1948.

[2] D. A. Huffman, “A method for the construction of minimum redundancy codes,” Proceedings of the IERE, vol. 40, pp. 1098-1101, 1952.

[3] R. De Prisco and A. De Santis, “On the redundancy achieved by Huffman codes,” Information Sciences, vol. 88, pp. 131-148, 1996.

[4] M. Golumbic, “Combinatorial merging,” IEEE Transactions on Computers, vol. 24, pp. 1164-1167, 1976.

[5] N. Faller, “An adaptive system for data compression,” in Proceedings of the 7th Asilomar Conference on Circuits, Systems, and Computers, 1973, pp. 593-597.

[6] R. G. Gallager, “Variations on a theme by Huffman,” IEEE Transactions on Information Theory, vol. 24, pp. 668-674, 1978.

[7] D. E. Knuth, “Dynamic Huffman coding,” Journal of Algorithms, vol. 6, pp. 163-180, 1985.

[8] R. L. Milidiu´, E. S. Laber, and A. A. Pessoa, “Bounding the compression loss of the FGK algorithm,” Journal of Algorithms, vol. 32, pp. 195-211, 1999. [OpenAIRE]

[9] J. S. Vitter, “Design and analysis of dynamic Huffman codes,” Journal of the ACM, vol. 34, pp. 825-845, 1987. [OpenAIRE]

[10] T. Gagie, “Dynamic length-restricted coding,” Master's thesis, University of Toronto, 2003.

[11] J. Abrahams, “Code and parse trees for lossless source encoding,” Communications in Information and Systems, vol. 1, pp. 113-146, 2001.

[12] M. Liddell and A. Moffat, “Length-restricted coding in static and dynamic frameworks,” in Proceedings of the IEEE Data Compression Conference, 2001, pp. 133-142. [OpenAIRE]

[13] D. G. Kirkpatrick and M. M. Klawe, “Alphabetic minimax trees,” SIAM Journal on Computing, vol. 14, pp. 514-526, 1985.

[14] K. Mehlhorn, “A best possible bound for the weighted path length of binary search trees,” SIAM Journal on Computing, vol. 6, pp. 235-239, 1977.

[15] D. D. Sleator and R. E. Tarjan, “Self-adjusting binary search trees,” Journal of the ACM, vol. 32, pp. 652-686, 1985. [OpenAIRE]

17 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Part of book or chapter of book . Article . Preprint . Conference object . 2005

dynamic shannon coding

T. Gagie;