Sync in Complex Dynamical Networks: Stability, Evolution, Control, and Application
- Published: 23 Oct 2005
[1] J.A. Acebr´on, L.L. Bonilla, C.J.P. Vicente, F. Ritort, and R. Spigler, The Kuramoto model: A simple paradigm for synchronzation phenomena, Reviews of Modern Physics, 2005, 77: 137-185. [OpenAIRE]
[2] R. Albert, and A.-L. Baraba´si, Statistical mechanics of complex networks, Review of Modern Physics, 2002, 74: 47-91.
[3] R. Albert, H. Jeong and A-L. Barabsi, Attack and error tolerance in complex networks, Nature, 2000, 406: 387-482.
[4] F. M. Atay and T. Biyikoglu, Graph operations and synchronization of complex networks, Phys. Rev. E, 2005, 72: 016217. [OpenAIRE]
[5] F.M. Atay, J. Jost, and A. Wende, Delays, connection topology, and synchronization of coupled chaotic maps, Phys. Rev. Lett., 2004, 92: 144101. [OpenAIRE]
[6] R. E. Amritkar, and S. Jalan, Self-organized and driven phase synchronization in coupled map networks, Physica A, 2003, 321: 220-225. [OpenAIRE]
[7] A.-L. Baraba´si, and R. Albert, Emergence of scaling in random networks, Science, 1999, 286: 509- 512.
[8] A.-L. Baraba´si, R. Albert, and H. Jeong, Mean-field theory for scale-free random networks, Physica A, 1999, 272: 173-187.
[9] M. Barahona, and L. M. Pecora, Synchronization in small-world systems, Phys. Rev. Lett., 2002, 89(5): 054101.
[10] A. M. Batista, S. E. de S. Pinto, R. L. Viana, and S. R. Lopes, Mode locking in small-world networks of coupled circle maps, Physica A, 2003, 322, 118-128.
[11] I.V. Belykh, V.N. Belykh, and M. Hasler, Connection graph stability method for synchronized coupled chaotic systems, Physica D, 2004, 195: 159-187. [OpenAIRE]
[12] I.V. Belykh, V. N. Belykh, and M. Hasler, Blinking model and synchronization in small-world networks with a time-varying coupling, Physica D, 2004, 195: 188-206. [OpenAIRE]
[13] I.I. Blekhman, Synchronization in Science and Technology, ASME, New York, 1988.
[14] M. Chavez, D.U. Hwang, A.Amann, H.G.E. Hentschel, and S. Bocalleti, Synchronization is enhanced in weighted complex networks, Phys. Rev. Lett., 2005, 94: 218701.
[15] G. Chen, and T. Ueta, Yet another chaotic attractor, Int. J. of Bifurcation and Chaos, 1999, 9: 1465-1466.