Total Generalized Variation for Manifold-valued Data

Preprint English OPEN
Bredies, K.; Holler, M.; Storath, M.; Weinmann, A.;
  • Related identifiers: doi: 10.1137/17M1147597
  • Subject: 94A08, 68U10, 90C90, 53B99, 65K10 | Mathematics - Numerical Analysis

In this paper we introduce the notion of second-order total generalized variation (TGV) regularization for manifold-valued data in a discrete setting. We provide an axiomatic approach to formalize reasonable generalizations of TGV to the manifold setting and present two... View more
  • References (21)
    21 references, page 1 of 3

    [1] P.-A. Absil, R. Mahony, and R. Sepulchre. Riemannian geometry of Grassmann manifolds with a view on algorithmic computation. Acta Applicandae Mathematicae, 80(2):199{220, 2004.

    [2] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization algorithms on matrix manifolds. Princeton University Press, 2009.

    [14] R. Bergmann, R. H. Chan, R. Hielscher, J. Persch, and G. Steidl. Restoration of manifold-valued images by half-quadratic minimization. Inverse Problems and Imaging, 10:281304, 2016.

    [15] R. Bergmann, J. Fitschen, J. Persch, and G. Steidl. Priors with coupled rst and second order di erences for manifold-valued image processing. arXiv preprint arXiv:1709.01343, 2017.

    [16] R. Bergmann, J. H. Fitschen, J. Persch, and G. Steidl. In mal convolution type coupling of rst and second order di erences on manifold-valued images. Scale Space and Variational Methods in Computer Vision 2017, pages 447{459, 2017.

    [17] R. Bergmann, F. Laus, G. Steidl, and A. Weinmann. Second order di erences of cyclic data and applications in variational denoising. SIAM Journal on Imaging Sciences, 7(4):2916{2953, 2014.

    [35] M. do Carmo. Riemannian geometry. Birkhauser, 1992.

    [36] J. Elhers, F. A. E. Pirani, and A. Schild. The geometry of free fall and light propagation. In O'Raifeartaigh, editor, General Relativity. Oxford University Press, 1972.

    [37] J. Eschenburg. Lecture notes on symmetric spaces. preprint, 1997.

    [38] O. Ferreira and P. Oliveira. Proximal point algorithm on Riemannian manifolds. Optimization, 51:257{270, 2002.

  • Related Research Results (1)
  • Similar Research Results (2)
  • Metrics
Share - Bookmark