publication . Article . Preprint . 2004


Gaoyong Zhang; Deane Yang; Ralph Howard; Wenxiong Chen; Erwin Lutwak;
Open Access
  • Published: 05 Feb 2004 Journal: Journal of Geometric Analysis, volume 14, pages 597-612 (issn: 1050-6926, eissn: 1559-002X, Copyright policy)
  • Publisher: Springer Science and Business Media LLC
A purely analytic proof is given for an inequality that has as a direct consequence the two most important affine isoperimetric inequalities of plane convex geometry: The Blaschke-Santalo inequality and the affine isoperimetric inequality of affine differential geometry.
arXiv: Mathematics::Metric GeometryMathematics::Differential Geometry
free text keywords: Geometry and Topology, Mathematics - Metric Geometry, Mathematics - Classical Analysis and ODEs, 52A40 (Primary) 52A10 53A15 (Secondary), Mathematical analysis, Isoperimetric inequality, Pure mathematics, Affine transformation, Affine geometry of curves, Affine geometry, Affine differential geometry, Isoperimetric dimension, Linear inequality, Mathematics, Kantorovich inequality
Funded by
NSF| Isoperimetric Inequalities
  • Funder: National Science Foundation (NSF)
  • Project Code: 0104363
  • Funding stream: Directorate for Mathematical & Physical Sciences | Division of Mathematical Sciences
NSF| Nonlinear PDEs in Geometric Analysis
  • Funder: National Science Foundation (NSF)
  • Project Code: 0072328
  • Funding stream: Directorate for Mathematical & Physical Sciences | Division of Mathematical Sciences
17 references, page 1 of 2

[1] G. Dolzmann and D. Hug, Equality of two representations of extended affine surface area, Arch. Math. (Basel) 65 (1995), no. 4, 352-356. MR 97c:52019

[2] G. H. Hardy, J. E. Littlewood, and G. P´olya, Inequalities, Cambridge, at the University Press, 1952, 2d ed. MR 13,727e

[3] Evans M. Harrell, II, A direct proof of a theorem of Blaschke and Lebesgue, J. Geom. Anal. 12 (2002), no. 1, 81-88. MR 1 881 292

[4] E. Hewitt and K. Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Springer-Verlag, New York, 1965. MR 32 #5826 [OpenAIRE]

[5] L. H¨ormander, The analysis of linear partial differential operators. I, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1990, Distribution theory and Fourier analysis.

[6] Kurt Leichtweiß, Zur Affinoberfl¨ache konvexer K¨orper, Manuscripta Math. 56 (1986), no. 4, 429-464. MR 87k:52011

[7] E. Lutwak, On the Blaschke-Santal´o inequality, Discrete geometry and convexity (New York, 1982), New York Acad. Sci., New York, 1985, pp. 106-112. MR 87c:52018

[8] , Extended affine surface area, Adv. Math. 85 (1991), no. 1, 39-68. MR 92d:52012

[9] E. Lutwak, The Brunn-Minkowski-Firey theory I: mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993), 131-150. [OpenAIRE]

[10] E. Lutwak, V. Oliker, On the regularity of solutions to a generalization of the Minkowski problem, J. Differential Geom. 41 (1995), 227-246. [OpenAIRE]

[11] H. L. Royden, Real analysis, third ed., Macmillan Publishing Company, New York, 1988. MR 90g:00004

[12] L. A. Santal´o, Integral geometry and geometric probability, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976, With a foreword by Mark Kac, Encyclopedia of Mathematics and its Applications, Vol. 1. MR 55 #6340

[13] C. Schu¨tt and E. Werner, The convex floating body, Math. Scand. 66 (1990), 275-290.

[14] A. Stancu, The discrete planar L0-Minkowski problem, Adv. Math. 167 (2002), 160- 174. [OpenAIRE]

[15] A. Stancu, On the number of solutions to the discrete two-dimensional L0-Minkowski problem, Adv. Math. 180 (2003), 290-323. [OpenAIRE]

17 references, page 1 of 2
Any information missing or wrong?Report an Issue