publication . Preprint . 2012

Fermionic Markov Chains

Fannes, Mark; Wouters, Jeroen;
Open Access English
  • Published: 25 Apr 2012
Abstract
Comment: 22 pages
Subjects
free text keywords: Quantum Physics, Mathematical Physics
Related Organizations
Download from
23 references, page 1 of 2

[1] L. Accardi. Topics in quantum probability. Physics Reports, 77(3):169-192, November 1981. [OpenAIRE]

[2] R. Alicki and M. Fannes. Quantum dynamical systems. Oxford University Press, Oxford, 2001. [OpenAIRE]

[3] H. Araki and H. Moriya. Equilibrium statistical mechanics of Fermion lattice systems. Reviews in Mathematical Physics, 15:93-198, 2003.

[4] K. Audenaert, F. Hiai, and D. Petz. Strongly subadditive functions. Acta Mathematica Hungarica, 128(4):386-394, 2010. [OpenAIRE]

[5] E. Balslev, J. Manuceau, and A. Verbeure. Representations of anticommutation relations and Bogolioubov transformations. Communications in Mathematical Physics, 8(4):315-326, 1968. [OpenAIRE]

[6] D. Blackwell. The entropy of functions of finite state Markov chains. In Trans. First Prague Conference on Information Theory, Decision Functions, and Random Processes, Prague, pages 13-20, 1957.

[7] R. Courant and D. Hilbert. Methods of Mathematical Physics. Wiley-VCH, first edition, 1989.

[8] B. Dierckx, M. Fannes, and M. Pogorzelska. Fermionic quasifree states and maps in information theory. Journal of Mathematical Physics, 49(3):032109, 2008.

[9] M. Fannes, B. Nachtergaele, and L. Slegers. Functions of Markov processes and algebraic measures. Reviews in Mathematical Physics, 4(1):39, 1992.

[10] M. Fannes, B. Nachtergaele, and R.F. Werner. Exact antiferromagnetic ground states of quantum spin chains. Europhysics Letters (EPL), 10(7):633-637, December 1989. [OpenAIRE]

[11] M. Fannes, B. Nachtergaele, and R.F. Werner. Finitely correlated states on quantum spin chains. Communications in Mathematical Physics, 144(3):443, 1992. [OpenAIRE]

[12] U. Grenander and G. Szego˝. Toeplitz Forms and Their Applications. AMS Bookstore, 2001.

[13] P.R. Halmos. A Hilbert space problem book. Springer-Verlag, New York, 1974.

[14] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, 1990.

[15] A.R. Kay and B.S. Kay. Monotonicity with volume of entropy and of mean entropy for translationally invariant systems as consequences of strong subadditivity. Journal of Physics A, 34(3):365, 2001.

23 references, page 1 of 2
Any information missing or wrong?Report an Issue