Fermionic Markov Chains

Preprint English OPEN
Fannes, Mark; Wouters, Jeroen;
  • Subject: Mathematical Physics | Quantum Physics

We study a quantum process that can be considered as a quantum analogue for the classical Markov process. We specifically construct a version of these processes for free Fermions. For such free Fermionic processes we calculate the entropy density. This can be done eithe... View more
  • References (23)
    23 references, page 1 of 3

    [1] L. Accardi. Topics in quantum probability. Physics Reports, 77(3):169-192, November 1981.

    [2] R. Alicki and M. Fannes. Quantum dynamical systems. Oxford University Press, Oxford, 2001.

    [3] H. Araki and H. Moriya. Equilibrium statistical mechanics of Fermion lattice systems. Reviews in Mathematical Physics, 15:93-198, 2003.

    [4] K. Audenaert, F. Hiai, and D. Petz. Strongly subadditive functions. Acta Mathematica Hungarica, 128(4):386-394, 2010.

    [5] E. Balslev, J. Manuceau, and A. Verbeure. Representations of anticommutation relations and Bogolioubov transformations. Communications in Mathematical Physics, 8(4):315-326, 1968.

    [6] D. Blackwell. The entropy of functions of finite state Markov chains. In Trans. First Prague Conference on Information Theory, Decision Functions, and Random Processes, Prague, pages 13-20, 1957.

    [7] R. Courant and D. Hilbert. Methods of Mathematical Physics. Wiley-VCH, first edition, 1989.

    [8] B. Dierckx, M. Fannes, and M. Pogorzelska. Fermionic quasifree states and maps in information theory. Journal of Mathematical Physics, 49(3):032109, 2008.

    [9] M. Fannes, B. Nachtergaele, and L. Slegers. Functions of Markov processes and algebraic measures. Reviews in Mathematical Physics, 4(1):39, 1992.

    [10] M. Fannes, B. Nachtergaele, and R.F. Werner. Exact antiferromagnetic ground states of quantum spin chains. Europhysics Letters (EPL), 10(7):633-637, December 1989.

  • Related Organizations (2)
  • Metrics
Share - Bookmark