Solution of the square liddriven cavity flow of a Bingham plastic using the finite volume method

Related identifiers: doi: 10.1016/j.jnnfm.2012.12.008 
Subject: Physics  Fluid Dynamics  Computer Science  Computational Engineering, Finance, and Science  Physics  Computational Physics

References
(36)
[1] H. A. Barnes, The yield stress { a review or ` Newtonian Fluid Mechanics 81 (1999) 133 { 178.
[2] E. C. Bingham, Fluidity and plasticity, McGrawHill, New York, 1922.
[3] T. C. Papanastasiou, Flows of materials with yield, Journal of Rheology 31 (1987) 385{404.
[4] I. Frigaard, C. Nouar, On the usage of viscosity regularisation methods for viscoplastic uid ow computation, Journal of NonNewtonian Fluid Mechanics 127 (2005) 1 { 26.
[5] E. O'Donovan, R. Tanner, Numerical study of the Bingham squeeze lm problem, Journal of NonNewtonian Fluid Mechanics 15 (1984) 75 { 83.
[6] M. Fortin, R. Glowinski, Augmented Lagrangian Methods: applications to the numerical solution of boundaryvalue problems, NorthHolland, Amsterdam, 1983.
[7] R. Glowinski, Numerical methods for nonlinear variational problems, Springer, New York, 1984.
[8] E. J. Dean, R. Glowinski, G. Guidoboni, On the numerical simulation of Bingham viscoplastic ow: Old and new results, Journal of NonNewtonian Fluid Mechanics 142 (2007) 36 { 62.
[9] P. Neofytou, A 3rd order upwind nite volume method for generalised Newtonian Advances in Engineering Software 36 (2005) 664{680.
[14] P. Neofytou, D. Drikakis, NonNewtonian ow instability in a channel with a sudden expansion, Journal of NonNewtonian Fluid Mechanics 111 (2003) 127 { 150.

Metrics
No metrics available

 Download from


Cite this publication