publication . Article . Preprint . 2008

generalized polar decompositions for closed operators in hilbert spaces and some applications

Gesztesy, Fritz; Malamud, Mark; Mitrea, Marius; Naboko, Serguei;
Open Access
  • Published: 12 Aug 2008 Journal: Integral Equations and Operator Theory, volume 64, pages 83-113 (issn: 0378-620X, eissn: 1420-8989, Copyright policy)
  • Publisher: Springer Science and Business Media LLC
Abstract
Comment: 24 pages, Sect. 3 extended
Subjects
arXiv: Mathematics::Spectral Theory
free text keywords: Algebra and Number Theory, Analysis, Unbounded operator, Nuclear operator, Hilbert space, symbols.namesake, symbols, Von Neumann's theorem, Mathematical analysis, Spectral theorem, Mathematics, Topology, Operator norm, Operator theory, Compact operator on Hilbert space, Mathematics - Functional Analysis, Mathematics - Spectral Theory, 47A05, 47A07, 47A55
Related Organizations
Funded by
FWF| Spectral Analysis und Applications to Solition Equations
Project
  • Funder: Austrian Science Fund (FWF) (FWF)
  • Project Code: Y 330
  • Funding stream: START-Programm
,
NSF| Singular Integrals, Smoothness Spaces, and Optimal Estimates for Elliptic and Parabolic Boundary Value Problems
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 0400639
  • Funding stream: Directorate for Mathematical & Physical Sciences | Division of Mathematical Sciences
,
NSF| FRG: Collaborative Research: New Trends in Harmonic Analysis
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 0456306
  • Funding stream: Directorate for Mathematical & Physical Sciences | Division of Mathematical Sciences
21 references, page 1 of 2

[1] Ju. L. Dalecki˘ı and M. G. Kre˘ın, Stability of Solutions of Differential Equations in Banach Space, Transl. Math. Monographs, 43, Amer. Math. Soc., Providence, RI, 1974.

[2] N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory, Wiley-Interscience, New York, 1988.

[3] N. Dunford and J. T. Schwartz, Linear Operators, Part III: Spectral Operators, Wiley-Interscience, New York, 1988.

[4] D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Clarendon Press, Oxford, 1989.

[5] B. Fuglede, A commutativity theorem for normal operators, Proc. Nat. Acad. Sci., USA, 33, 35-40 (1950). [OpenAIRE]

[6] T. Kato, A generalization of the Heinz inequality, Proc. Japan Acad. 37, 305-308 (1961). [OpenAIRE]

[7] T. Kato, Fractional powers of dissipative operators, J. Math. Soc. Japan, 13, 246-274 (1961). [OpenAIRE]

[8] T. Kato, Fractional powers of dissipative operators, II, J. Math. Soc. Japan, 14, 242-248 (1962). [OpenAIRE]

[9] T. Kato, Perturbation Theory for Linear Operators, corr. printing of the 2nd ed., Springer, Berlin, 1980.

[10] M. A. Krasnoselskii, P. P. Zabreiko, E. I. Pustylnik, and P. E. Sobolevskii, Integral Operators in Spaces of Summable Functions, Noordhoff, Leyden, 1976.

[11] S. G. Krein, Ju. I. Petunin, and E. M. Semenov, Interpolation of Linear Operators, Transl. Math. Monographs, 54, Amer. Math. Soc., Providence, RI, 1982.

[12] N. Okazawa, Logarithms and imaginary powers of closed linear operators, Integral Equ. Oper. Theory 38, 458- 500 (2000).

[13] C. R. Putnam, On normal operators in Hilbert space, Amer. J. Math. 73, 357-362 (1951).

[14] C. R. Putnam, Commutation Properties of Hilbert Space Operators and Related Topics, Springer, Berlin, 1967.

[15] M. Reed and B. Simon, Methods of Modern Mathematical Physics. II: Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975.

21 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Preprint . 2008

generalized polar decompositions for closed operators in hilbert spaces and some applications

Gesztesy, Fritz; Malamud, Mark; Mitrea, Marius; Naboko, Serguei;