The tensor rank of tensor product of two three-qubit W states is eight

Preprint English OPEN
Chen, Lin; Friedland, Shmuel;
(2017)
  • Subject: Mathematics - Combinatorics
    arxiv: Computer Science::Emerging Technologies | Quantum Physics

We show that the tensor rank of tensor product of two three-qubit W states is not less than eight. Combining this result with the recent result of M. Christandl, A. K. Jensen, and J. Zuiddam that the tensor rank of tensor product of two three-qubit W states is at most e... View more
  • References (21)
    21 references, page 1 of 3

    3. For B ∈ {e1 ⊗ e1 ⊗ e2, e1 ⊗ e2 ⊗ e1} the rank of W + tB is three for all t 6= −1. The rank of W − B is two.

    [1] T.-C. Wei and P. M. Goldbart, Physical Review A 68, 042307 (2003).

    [2] L. Chen, A. Xu, and H. Zhu, Physical Review A 82, 032301 (2010).

    [3] H. Derksen, S. Friedland, L.-H. Lim, and L. Wang, Theoretical and computational aspects of entanglement (2017), 1705.07160, URL http://arxiv.org/abs/1705.07160.

    [4] L. Chen, E. Chitambar, R. Duan, Z. Ji, and A. Winter, Physical Review Letters 105, 200501 (2010).

    [5] S. Friedland, Remarks on the symmetric rank of symmetric tensors (2016), 1505.00860, URL http://arxiv.org/abs/1505.00860.

    [6] M. Christandl, A. K. Jensen, and J. Zuiddam, Tensor rank is not multiplicative under the tensor product (2017), 1705.09379, URL http://arxiv.org/abs/1705.09379.

    [7] J. B. Kruskal, Linear Algebra and its Applications 18, 95 (1977), ISSN 0024-3795, URL http://www.sciencedirect.com/science/article/pii/0024379577900696.

    [8] V. Strassen, Journal Fr Die Reine Und Angewandte Mathematik 1973, 184 (1973).

    [9] J. JaJa and J. Takche, SIAM Journal on Computing 15, 1004 (1986), https://doi.org/10.1137/0215071, URL https://doi.org/10.1137/0215071.

  • Metrics
Share - Bookmark