publication . Preprint . 2007

Graphs on Surfaces and the Partition Function of String Theory

Garcia-Islas, J. Manuel;
Open Access English
  • Published: 01 Oct 2007
Abstract
Comment: 15 pages, 2 figures, improved and corrected version
Subjects
ACM Computing Classification System: MathematicsofComputing_DISCRETEMATHEMATICS
free text keywords: Mathematical Physics, High Energy Physics - Theory, Mathematics - Combinatorics
Download from
21 references, page 1 of 2

[1] G.Aguilar Cruz, F.Zaragoza Mart´ınez, An upper bound on the size of irreducible triangulations, Draft (2006)

[2] J.Ambjorn, B.Durhuus, J.Frohlich, P.Orland, The appearance of critical dimensions in regulated string theories, Nuclear Phys.B 270, (1986) 457- 482

[3] J.Ambjorn, B.Durhuus, J.Frohlich, P.Orland, The appearance of critical dimensions in regulated string theories II, Nuclear Phys.B 275, (1986) 161-184

[4] J. Ambjorn, B. Durhuus, T. Jonsson, Quantum Geometry: A statistical field theory approach, Cambridge University Press (1997) [OpenAIRE]

[5] J.L.Arocha, J.Bracho, V.Neumann-Lara, Tight and untight triangulations of surfaces by complete graphs, Journal of Combinatorial Theory Series B 63 2 (1995) 185-199 [OpenAIRE]

[6] D.Barnette, Generating the triangulations of the projective plane, J.Comb.Theory, 33, (1982) 222-230 [OpenAIRE]

[7] D.Barnette, A.Edelson, All orientable 2-manifolds have finitely many minimal triangulations, Israel J.Math 62 90-98 (1988)

[8] D.Barnette, A.Edelson, All 2-manifolds have finitely many minimal triangulations, Israel J.Math 67 123-128 (1989)

[9] B´ela Bollob´as, Modern Graph Theory, Graduate Texts in Mathematics Springer (1998)

[10] F.R.K.Chung, Robert Langlands, A combinatorial Laplacian with vertex weights, Journal of Combinatorial Theory A, 75 (1996) 316-327

[11] L.Goddyn, L.B.Richter, J.Siran, Triangular embeddings of complete graphs from graceful labellings of paths, Preprint submitted to Elsevier Science (2006)

[12] M.Green, J.Schwarz, E.Witten, Superstring theory, two volumes, Cambridge University Press, (1987)

[13] G.R.Grimmett, An upper bound for the number of spanning trees of a graph, Discrete Math, 16 (1976) 323-324 [OpenAIRE]

[14] V.P.Korzhik, H.J.Heinz-Jrgen Voss, Exponential families of nonisomorphic nonorientable genus embeddings of complete graphs, Journal of Combinatorial Theory, Series B 91 2 (2004) 253-287

[15] S.A. Lavrenchenko, Irreducible Triangulations of the Torus, Translated from Ukrainski´ıGeometricheski´ıSbornik, 30, (1987) 52-62

21 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue