## Graphs on Surfaces and the Partition Function of String Theory

*Garcia-Islas, J. Manuel*;

- Subject: Mathematics - Combinatorics | Mathematical Physics | High Energy Physics - Theoryacm: MathematicsofComputing_DISCRETEMATHEMATICS

- References (21)
[1] G.Aguilar Cruz, F.Zaragoza Mart´ınez, An upper bound on the size of irreducible triangulations, Draft (2006)

[2] J.Ambjorn, B.Durhuus, J.Frohlich, P.Orland, The appearance of critical dimensions in regulated string theories, Nuclear Phys.B 270, (1986) 457- 482

[3] J.Ambjorn, B.Durhuus, J.Frohlich, P.Orland, The appearance of critical dimensions in regulated string theories II, Nuclear Phys.B 275, (1986) 161-184

[4] J. Ambjorn, B. Durhuus, T. Jonsson, Quantum Geometry: A statistical field theory approach, Cambridge University Press (1997)

[5] J.L.Arocha, J.Bracho, V.Neumann-Lara, Tight and untight triangulations of surfaces by complete graphs, Journal of Combinatorial Theory Series B 63 2 (1995) 185-199

[6] D.Barnette, Generating the triangulations of the projective plane, J.Comb.Theory, 33, (1982) 222-230

[7] D.Barnette, A.Edelson, All orientable 2-manifolds have finitely many minimal triangulations, Israel J.Math 62 90-98 (1988)

[8] D.Barnette, A.Edelson, All 2-manifolds have finitely many minimal triangulations, Israel J.Math 67 123-128 (1989)

[9] B´ela Bollob´as, Modern Graph Theory, Graduate Texts in Mathematics Springer (1998)

[10] F.R.K.Chung, Robert Langlands, A combinatorial Laplacian with vertex weights, Journal of Combinatorial Theory A, 75 (1996) 316-327

- Metrics No metrics available

- Download from

- Cite this publication