13 references, page 1 of 2 [1] C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical Journal, vol. 27, pp. 379-423, 623-656, 1948.

[2] A. Re´nyi, “On the dimension and entropy of probability distributions,” Acta Mathematica Hungarica, vol. 10, no. 1-2, pp. 193-215, 1959.

[3] R. S. Ellis, Entropy, large deviations, and statistical mechanics, 1st ed. Springer, 1985.

[4] R. G. Gray, Entropy and Information Theory, 2nd ed. Springer, 2011.

[5] P. Seibt, Algorithmic Information Theory. Berlin Heidelberg: SpringerVerlag, 2006.

[6] Y. Wu and S. Verdu´, “Re´nyi information dimension: Fundamental limits of almost lossless analog compression,” IEEE Transactions On Information Theory, vol. 56, no. 8, pp. 3721-3748, 2010.

[7] J. D. Howroyd, “On dimension and on existence of sets of finite positive hausdorff measure,” Proc. London Math. Soc., vol. 70, no. 3, pp. 581- 604, 1995.

[8] --, On the theory of Hausdorff measure in metric space. London: Ph.D. Thesis, University Collage, 1994.

[9] C. A. Rogers, Hausdorff measures, 2nd ed. Cambridge University Press, 1998.

[10] A. Fan, K. Lau, and H. Rao, “Relationships between diffrent dimensions of a measure,” Monatsh. Math., vol. 135, pp. 191-201, 2002.