publication . Preprint . 2007

Physics behind the Debye temperature

Garai, Jozsef;
Open Access English
  • Published: 28 Feb 2007
Textbooks introduce the Debye temperature to simplify the integration of the heat capacity. This approach gives the impression that the Debye temperature is a parameter which makes the integration more convenient. The Debye frequency cut occurs when the wavelength of the phonon frequency reaches the size of the smallest unit of the lattice which is the length of the unit cell. At frequencies higher than the cut off frequency the 'lattice' unable to 'see' the vibration because the wavelength of the vibration is smaller than the basic unit of the atomic arrangement; therefore, the vibration becomes independent from the lattice. The Debye cut off frequency or tempe...
arXiv: Physics::Chemical Physics
free text keywords: Physics - Chemical Physics
Download from
23 references, page 1 of 2

1F. Reif, Fundamentals of statistical and thermal physics (McGraw Hill Book Company, Singapore, 1985), Chap. VII.

2A. Petit and P. Dulong, “Sur quelques points importants de la theorie de la chaleur,” Ann. Chim. Phys. 10, 395-413 (1819).

3A. Einstein, “Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme,” Ann. Phys. (Leipzig) 22, 180-190 (1907). [OpenAIRE]

4M. Planck, "Zur Theorie des Gesetzes der Energieverteilung im Normalspektrum," Verhandl. Deutsch. phys. Ges. 2, 237-245, (1900).

5M. Planck, "Über das Gesetz der Energieverteilung in Normalspektrum." Ann. Physik 4, 553-563, (1901). [OpenAIRE]

6 M. Born and T. von Kármán, “Über Schwingungen in Raumgittern,” Phys. Z. 13, 297-309 (1912).

7P. Debye, “Zur Theorie der spezifischen Wärmen,” Ann. Phys. (Leipzig) 39, 789-939 (1912).

8 Landolt-Bornstein, Zahlenwerte und Funktionen aus Physic, Chemie, Astronomie, Geophysic, und Technik, II. Band, Eigenschaften der Materie in Ihren Aggregatzustanden, 4 Teil, Kalorische Zustandsgrossen (SpringerVerlag, 1961).

9C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, Inc. New York, 1966).

10N.W. Ashcroft, and N.D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976).

11J.R. Clem and R.P. Godwin, “Dynamical properties of a one-dimensional “crystal” with free ends,” Am. J. Phys. 34, 460-469 (1966).

12B.D. Sukheeja, “Solution of the integral in Debye's theory of specific heat of solids,” Am. J. Phys. 38, 923-924 (1970).

13A.A. Valladares, “The Debye model in n dimensions,” Am. J. Phys. 43, 308-311 (1975).

14J.M. Ramsey and E.A. Vogler, “Exact, Einstein, and Debye heat capacities of a one-dimensional crystal,” Am. J. Phys. 45, 583-584 (1977).

15J. Deltour, “Comment on Exact, Einstein, and Debye heat capacities of a one-dimensional crystal,” Am. J. Phys. 46, 954 (1978).

23 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue