publication . Preprint . 2013

Entanglement Classification of extended Greenberger-Horne-Zeilinger-Symmetric States

Jung, Eylee; Park, DaeKil;
Open Access English
  • Published: 15 Mar 2013
In this paper we analyze entanglement classification of extended Greenberger-Horne-Zeilinger-symmetric states $\rho^{ES}$, which is parametrized by four real parameters $x$, $y_1$, $y_2$ and $y_3$. The condition for separable states of $\rho^{ES}$ is analytically derived. The higher classes such as bi-separable, W, and Greenberger-Horne-Zeilinger classes are roughly classified by making use of the class-specific optimal witnesses or map from the extended Greenberger-Horne-Zeilinger symmetry to the Greenberger-Horne-Zeilinger symmetry. From this analysis we guess that the entanglement classes of $\rho^{ES}$ are not dependent on $y_j \hspace{.2cm} (j=1,2,3)$ indiv...
free text keywords: Quantum Physics
Download from
16 references, page 1 of 2

[2] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, England, 2000).

[3] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres and W. K. Wootters, Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channles, Phys.Rev. Lett. 70 (1993) 1895.

[4] C. H. Bennett and S. J. Wiesner, Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states, Phys. Rev. Lett. 69 (1992) 2881.

[5] V. Scarani, S. Lblisdir, N. Gisin and A. Acin, Quantum cloning, Rev. Mod. Phys. 77 (2005) 1225 [quant-ph/0511088] and references therein.

[6] A. K. Ekert, Quantum Cryptography Based on Bells Theorem, Phys. Rev. Lett. 67 (1991) 661.

[7] G. Vidal, Efficient classical simulation of slightly entangled quantum computations, Phys. Rev. Lett. 91 (2003) 147902 [quant-ph/0301063].

[8] C. H. Bennett, S. Popescu, D. Rohrlich, J. A. Smolin, and A. V. Thapliyal, Exact and asymptotic measures of multipartite pure-state entanglement, Phys. Rev. A 63 (2000) 012307. [OpenAIRE]

[9] W. Du¨r, G. Vidal and J. I. Cirac, Three qubits can be entangled in two inequivalent ways, Phys.Rev. A 62 (2000) 062314.

[10] A. Ac´ın, D. Bruß, M. Lewenstein, and A. Sanpera, Classification of Mixed Three-Qubit States, Phys. Rev. Lett. 87 (2001) 040401. [OpenAIRE]

[11] C. Eltschka and J. Siewert, Optimal witnesses for three-qubit entanglement from GreenbergerHorne-Zeilinger symmetry, arXiv:1204.5451 (quant-ph).

[12] F. Verstraete, J. Dehaene, B. De Moor, and H. Verschelde, Four qubits can be entangled in nine different ways, Phys. Rev. A 65 (2002) 052112.

[13] W. K. Wootters, Entanglement of Formation of an Arbitrary State of Two Qubits, Phys. Rev. Lett. 80 (1998) 2245 [quant-ph/9709029]. [OpenAIRE]

[14] V. Coffman, J. Kundu and W. K. Wootters, Distributed entanglement, Phys. Rev. A 61 (2000) 052306 [quant-ph/9907047]. [OpenAIRE]

[15] C. Eltschka and J. Siewert, Entanglement of Three-Qubit Greenberger-Horne-ZeilingerSymmetric States, Phys. Rev. Lett. 108 (2012) 020502.

[16] J. Siewert and C. Eltschka, Quantifying Tripartite Entanglement of Three-Qubit Generalized Werner States, Phys. Rev. Lett. 108 (2012) 230502. [OpenAIRE]

16 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue