Adaptive Graph Convolutional Neural Networks

Preprint English OPEN
Li, Ruoyu; Wang, Sheng; Zhu, Feiyun; Huang, Junzhou;
  • Subject: Statistics - Machine Learning | Computer Science - Learning
    arxiv: Computer Science::Neural and Evolutionary Computation
    acm: MathematicsofComputing_DISCRETEMATHEMATICS

Graph Convolutional Neural Networks (Graph CNNs) are generalizations of classical CNNs to handle graph data such as molecular data, point could and social networks. Current filters in graph CNNs are built for fixed and shared graph structure. However, for most real data... View more
  • References (31)
    31 references, page 1 of 4

    [Altae-Tran et al. 2016] Altae-Tran, H.; Ramsundar, B.; Pappu, A. S.; and Pande, V. 2016. Low data drug discovery with one-shot learning. arXiv preprint arXiv:1611.03199.

    [Bruna et al. 2013] Bruna, J.; Zaremba, W.; Szlam, A.; and LeCun, Y. 2013. Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203.

    [Chung 1997] Chung, F. R. 1997. Spectral graph theory.

    Number 92. American Mathematical Soc.

    [De Brabandere et al. 2016] De Brabandere, B.; Jia, X.; Tuytelaars, T.; and Van Gool, L. 2016. Dynamic filter networks. In Neural Information Processing Systems (NIPS).

    [Defferrard, Bresson, and Vandergheynst 2016] Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016. Convolutional neural networks on graphs with fast localized spectral filtering. In Advances in Neural Information Processing Systems, 3837-3845.

    [Delaney 2004] Delaney, J. S. 2004. Esol: estimating aqueous solubility directly from molecular structure. Journal of chemical information and computer sciences 44(3):1000-1005.

    [Dix et al. 2006] Dix, D. J.; Houck, K. A.; Martin, M. T.; Richard, A. M.; Setzer, R. W.; and Kavlock, R. J. 2006. The toxcast program for prioritizing toxicity testing of environmental chemicals. Toxicological Sciences 95(1):5-12.

    [Dundar et al. 2015] Dundar, M.; Kou, Q.; Zhang, B.; He, Y.; and Rajwa, B. 2015. Simplicity of kmeans versus deepness of deep learning: A case of unsupervised feature learning with limited data. In Machine Learning and Applications (ICMLA), 2015 IEEE 14th International Conference on, 883- 888. IEEE.

    [Duvenaud et al. 2015] Duvenaud, D. K.; Maclaurin, D.; Iparraguirre, J.; Bombarell, R.; Hirzel, T.; Aspuru-Guzik, A.; and Adams, R. P. 2015. Convolutional networks on graphs for learning molecular fingerprints. In Advances in neural information processing systems, 2224-2232.

  • Related Organizations (1)
  • Metrics