Phase-matching-free parametric oscillators based on two dimensional semiconductors

Preprint English OPEN
Ciattoni, A. ; Marini, A. ; Rizza, C. ; Conti, C. (2017)
  • Subject: Physics - Optics
    arxiv: Physics::Optics

Optical parametric oscillators are widely-used pulsed and continuous-wave tunable sources for innumerable applications, as in quantum technologies, imaging and biophysics. A key drawback is material dispersion imposing the phase-matching condition that generally entails a complex setup design, thus hindering tunability and miniaturization. Here we show that the burden of phase-matching is surprisingly absent in parametric micro-resonators adopting monolayer transition-metal dichalcogenides as quadratic nonlinear materials. By the exact solution of nonlinear Maxwell equations and first-principle calculation of the semiconductor nonlinear response, we devise a novel kind of phase-matching-free miniaturized parametric oscillator operating at conventional pump intensities. We find that different two-dimensional semiconductors yield degenerate and non-degenerate emission at various spectral regions thanks to doubly-resonant mode excitation, which can be tuned through the incidence angle of the external pump laser. In addition we show that high-frequency electrical modulation can be achieved by doping through electrical gating that efficiently shifts the parametric oscillation threshold. Our results pave the way for new ultra-fast tunable micron-sized sources of entangled photons, a key device underpinning any quantum protocol. Highly-miniaturized optical parametric oscillators may also be employed in lab-on-chip technologies for biophysics, environmental pollution detection and security.
  • References (44)
    44 references, page 1 of 5

    [1] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics, Phys. Rev. Lett. 7, 118 - 119 (1961).

    [2] T. A. Birks, W. J. Wadsworth, P. St.J. Russell, “Supercontinuum generation in tapered fibers, Opt. Lett. 25, 1415 - 1417 (2000).

    [3] G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons, Opt. Quant. Electron. 28, 1691 - 1740 (1996).

    [4] C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with siliconorganic hybrid slot waveguides, Nat. Photon. 3, 216 - 219 (2009).

    [5] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs, Phys. Rev. Lett. 75, 4337 - 4341 (1995).

    [6] R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs, Nature 439, 179 - 182 (2006).

    [7] J. A. Giordmaine and R. C. Miller, “Tunable Coherent Parametric Oscillation in LiNbO3 at Optical Frequencies, Phys. Rev. Lett. 14, 973 - 976 (1965).

    [8] A. Yariv and W. H, Louisell, “Theory of the Optical Parametric Oscillator, IEEE J. Quant. Electron. 9, 418 - 424 (1966).

    [9] S. J. Brosnan and R. L. Byer, “Optical Parametric Oscillator Threshold and Linewidth Studies, IEEE J. Quant. Electron. 15, 415 - 431 (1979).

    [10] R. C. Eckardt, C. D. Nabors, W. J. Kozlovsky, and R. L. Byer, “Optical parametric oscillator frequency tuning and control, J. Opt. Soc. Am. B 8, 646 - 667 (1991).

  • Metrics
    No metrics available
Share - Bookmark