A divergence theorem for pseudo-Finsler spaces

Preprint English OPEN
Minguzzi, E.;
(2015)
  • Subject: General Relativity and Quantum Cosmology | Mathematical Physics | Mathematics - Differential Geometry
    arxiv: Mathematics::Differential Geometry | Mathematics::Metric Geometry

We study the divergence theorem on pseudo-Finsler spaces and obtain a completely Finslerian version for spaces having a vanishing mean Cartan torsion. This result helps to clarify the problem of energy-momentum conservation in Finsler gravity theories.
  • References (22)
    22 references, page 1 of 3

    [1] M. Anastasiei. Conservation laws in the {V, H}-bundles of general relativity. Tensor, N. S., 46:323-328, 1987.

    [2] M. Anastasiei. Finsler connections in generalized Lagrange spaces. Balkan J. Geom. Appl., 1:1-9, 1996.

    [3] P. L. Antonelli, R. S. Ingarden, and M. Matsumoto. The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology. Springer Science+Business Media, Dordrecht, 1993.

    [4] D. Bao, S.-S. Chern, and Z. Shen. An Introduction to Riemann-Finsler Geometry. Springer-Verlag, New York, 2000.

    [5] F. Brickell. A new proof of Deicke's theorem on homogeneous functions. Proc. Amer. Math. Soc., 16:190-191, 1965.

    [6] A. Deicke. U¨ber die Finsler-R¨aume mit Ai = 0. Arch. Math., 4:45-51, 1953.

    [7] S. Ikeda. On the conservation laws in the theory of fields in Finsler spaces. J. Math. Phys., 22(6):1211-1214, 1981.

    [8] R. S. Ingarden and M. Matsumoto. On the 1953 Barthel connection of a Finsler space and its mathematical and physical interpretation. Rep. Math. Phys., 32:35-48, 1993.

    [9] H. Ishikawa. Einstein equation in lifted Finsler spaces. Il Nuovo Cimento, 56:252-262, 1980.

    [10] M. S. Knebelman. Collineations and Motions in Generalized Spaces. Amer. J. Math., 51:527-564, 1929.

  • Metrics
Share - Bookmark