publication . Preprint . 2007

Boundary layers and the vanishing viscosity limit for incompressible 2D flow

Filho, Milton C. Lopes;
Open Access English
  • Published: 06 Dec 2007
Abstract
Comment: 28 pages
Subjects
arXiv: Physics::Fluid Dynamics
free text keywords: Mathematics - Analysis of PDEs, 76D10, 35Q30
Download from
31 references, page 1 of 3

[5] Weinan E, Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation, Acta Math. Sinica, English series, 16(2000), 207-218. [OpenAIRE]

[6] Weinan E and B. Engquist, Blow-up of solutions to the unsteady Prandtl's equation, Comm. Pure Appl. Math. 50 (1997), 1287-1293.

[7] E. Grenier, On the nonlinear instability of Euler and Prandtl equations, Comm. Pure Appl. Math., LIII (2000), 1067-1091.

[8] D. Iftimie, M. C. Lopes Filho and H. J. Nussenzveig Lopes, Incompressible flow around a small obstacle and the vanishing viscosity limit, in preparation, 2008. [OpenAIRE]

[9] D. Iftimie and F. Sueur, Viscous boundary layers for the Navier Stokes equations with the Navier slip conditions, preprint.

[10] W. Ja¨ger and A. Mikeli´c, On the roughness-induced effective boundary conditions for an incompressible viscous flow, J. Differential Equations 170 (2001) 96-122.

[11] T. Kato, Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary In: S. S. Chern (ed.) Seminar on nonlinear PDE, MSRI, 1984.

[12] J. Kelliher, Navier-Stokes equations with Navier boundary condition for a bounded domain in the plane, SIAM J. Math. Anal. 38 (2006), 210-232.

[13] J. Kelliher, On Kato's condition for vanishing viscosity, Indiana Univ. Math. J. 56 (2007), 1711-1721. [OpenAIRE]

[14] J. Kelliher, M. C. Lopes Filho and H. J. Nussenzveig Lopes, Vanishing viscosity limit for an expanding domain in space, in preparation, 2008.

[15] G. Lieberman, Second order parabolic differential equations. World Scientific Publishing Co., Inc., River Edge, NJ, 1996.

[16] J.-L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires, Dunod; Gauthier-Villars, Paris 1969.

[17] M. Lombardo, M. Cannone and M. Sammartino, Well-posedness of the boundary layer equations, SIAM J. Math. Anal. 35 (2003), no. 4, 987-1004.

[18] M. Lopes Filho, A. Mazzucato and H. Nussenzveig Lopes, Weak solutions, renormalized solutions and enstrophy defects in 2D turbulence, Arch. Rat. Mech. Anal., 179 (2006), 353- 387.

[19] M. Lopes Filho, A. Mazzucato and H. Nussenzveig Lopes, Vanishing viscosity limit for incompressible flow inside a rotating circle, to appear, Phys. D, 2008. [OpenAIRE]

31 references, page 1 of 3
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue