## Boundary layers and the vanishing viscosity limit for incompressible 2D flow

*Filho, Milton C. Lopes*;

- Subject: 35Q30 | 76D10 | Mathematics - Analysis of PDEsarxiv: Physics::Fluid Dynamics

- References (31)
[5] Weinan E, Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation, Acta Math. Sinica, English series, 16(2000), 207-218.

[6] Weinan E and B. Engquist, Blow-up of solutions to the unsteady Prandtl's equation, Comm. Pure Appl. Math. 50 (1997), 1287-1293.

[7] E. Grenier, On the nonlinear instability of Euler and Prandtl equations, Comm. Pure Appl. Math., LIII (2000), 1067-1091.

[8] D. Iftimie, M. C. Lopes Filho and H. J. Nussenzveig Lopes, Incompressible flow around a small obstacle and the vanishing viscosity limit, in preparation, 2008.

[9] D. Iftimie and F. Sueur, Viscous boundary layers for the Navier Stokes equations with the Navier slip conditions, preprint.

[10] W. Ja¨ger and A. Mikeli´c, On the roughness-induced effective boundary conditions for an incompressible viscous flow, J. Differential Equations 170 (2001) 96-122.

[11] T. Kato, Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary In: S. S. Chern (ed.) Seminar on nonlinear PDE, MSRI, 1984.

[12] J. Kelliher, Navier-Stokes equations with Navier boundary condition for a bounded domain in the plane, SIAM J. Math. Anal. 38 (2006), 210-232.

[13] J. Kelliher, On Kato's condition for vanishing viscosity, Indiana Univ. Math. J. 56 (2007), 1711-1721.

[14] J. Kelliher, M. C. Lopes Filho and H. J. Nussenzveig Lopes, Vanishing viscosity limit for an expanding domain in space, in preparation, 2008.

- Metrics No metrics available

- Download from

- Cite this publication